Funded by a California's Nonpoint Source Pollution Control Program Federal Clean Water Act Section 319(h) Grant

Grant Agreement No. D1513402

Total Project Cost - \$ 271,074.91

- Grant Funds \$175,000.00
- Labor Match \$82,836.91
- State Contract Lab \$13,238.00

Prepared for:

Shana Rapoport, Grant Manager
Los Angeles Regional Water Quality Control Board
320 West 4th Street, Suite 200
Los Angeles, CA 90013

Prepared By:

Rebecca Lustig, Project Coordinator

Ventura County Environmental Health Division
800 South Victoria Avenue
Ventura, CA 93009-1730

https://vcrma.org/divisions/environmental-health

JANUARY 22, 2019

EXECUTIVE SUMMARY

In 2012, the Los Angeles Regional Water Quality Control Board (Regional Board) released the Resolution No. R12-011, Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries (Algae TMDL). This TMDL identified onsite wastewater treatment systems (OWTS) as a contributing source of nutrients to the Watershed.

The Ventura County Environmental Health Division (Division) entered into a grant agreement with the State Water Resources Control Board (State Board) for a Clean Water Act 319(h) Nonpoint Source Program Grant in the amount of \$175,000. The purpose of this grant was to fund a special study to evaluate OWTS contribution to water quality impairments in the Ventura River Watershed (Algae TMDL Study).

A project management team comprised of Division staff was selected and Geosyntec Consultants was contracted to develop the Algae TMDL Study work plans and reports. Groundwater and surface water sampling locations were selected and sampled on three separate occasions.

Geosyntec staff evaluated the analytical data and presented the findings in a Technical Report and GIS map delineating areas of OWTS in the Ventura River Watershed designated at high and potential risk of contributing to nutrient loading. Using current OWTS permitting criteria, historical geologic and water quality data, and the technical report and GIS map developed during this study, the Division created a Prescriptive Plan aimed at reducing nutrient loading to the Ventura River Watershed attributable to OWTS.

TABLE OF CONTENTS

List of Acronyms and Abbreviations	Page 3
1.0 Introduction and Background	Page 4
2.0 Project Description	Page 9
3.0 Project Evaluation and Effectiveness	Page 15
4.0 Study Conclusions and Next Steps	Page 25
5.0 References	Page 30

LIST OF APPENDICES

Appendix 1: Maps of the Ventura River Watershed

- Appendix 1-1: Overview of Ventura River Watershed
- Appendix 1-2: OWTS Parcels in the Ventura River Watershed
- Appendix 1-3: Surface Water and Groundwater Sampling Locations
- Appendix 1-4: GIS Map of High-Risk Onsite Wastewater Treatment System Areas

Appendix 2: Prescriptive Plan

Appendix 3: Technical Report

- 3-1 Complete November 2018 Technical Report Final
- 3-2 TAC Comments on September 2018 Draft Technical Report
- 3-3 Responses to Technical Report TAC and Regional Board Comments

Appendix 4: Field Sampling Photographs

Appendix 5: CEQA Documentation

Appendix 6: Advisory Notice for Septic Systems in the Siete Robles Tract

LIST OF ACRONYMS AND ABBREVIATIONS

Algae TMDL – Resolution No. R12-011, Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries

Algae TMDL Study – Special Study funded by Clean Water Act 319(h) Nonpoint Source Program Grant to evaluate onsite wastewater treatment system contribution to water quality impairments in the Ventura River Watershed

ATU - Advanced Treatment Unit

BOS – Ventura County Board of Supervisors

CEDEN – California Environmental Data Exchange Network

CWA – Clean Water Act

Division – Ventura County Environmental Health Division

GIS Map - Map of Onsite Wastewater Treatment System Risk Areas in the Ventura River Watershed based on the Algae TMDL Study data

LA – Load Allocation

LAMP – Local Agency Management Program

OVSD – Ojai Valley Sanitary District

OWTS – Onsite Wastewater Treatment System

OWTS Policy – State OWTS Policy: Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems

PAEP – Project Assessment and Evaluation Plan

PPCP – Pharmaceuticals and Personal Care Products

Regional Board – Los Angeles Regional Water Quality Control Board

State Board – State Water Resources Control Board

TMDL – Total Maximum Daily Load

TN – Total Nitrogen

VCBC – Ventura County Building Code

VRW - Ventura River Watershed

WDR – Waste Discharge Requirements

1.0 Introduction and Background

1.1 About the Ventura River Watershed

The Ventura River Watershed (VRW) is primarily located in Ventura County, California, with a small portion of the watershed in Santa Barbara County. The main tributaries of the 226 square mile watershed are Matilija Creek, North Fork Matilija Creek, San Antonio Creek, Canada Larga Creek, and Coyote Creek, and the watershed discharges to the Pacific Ocean. Most of the watershed consists of mountains and foothills, with only 15 percent of the watershed considered flat (slope of 10% or less).

The portion of the watershed within Ventura County consists of the County of Ventura (49.1%), the United States Forest Service (47.7%), the City of Ojai (1.9%), and the City of Ventura (1.2%) (Walter, 2015). The majority of the watershed is undeveloped, with the northern half in the Los Padres National Forest while the southern half includes the cities of Ojai and Ventura and several unincorporated communities such as Oak View and Meiners Oaks. After open space, agriculture is the predominant land use in the watershed. The primary agricultural uses in the watershed consist of citrus and avocado irrigated crops and cattle grazing. A map of watershed may be seen in Appendix 1-1.

The four major groundwater basins in the watershed include the Ojai Valley basin (10.1 square miles), Upper Ojai basin (4.4 sq. mi.), Upper Ventura River basin (14.6 sq. mi.), and the Lower Ventura River basin (9.5 sq. mi). The Ojai Valley basin has the largest capacity of the four basins, and several municipal and agricultural water users rely heavily on this basin for supply. The Ojai Valley basin contributes regular annual flow to the San Antonio Creek. The basin has unconfined conditions in the northern and eastern portions and mostly confined to semi-confined in the central, southern, and western portions. Depth to groundwater is usually less than 50 feet in the southern and western portions, while the eastern and northern areas may have depths to groundwater up to 300 feet (Walter, 2015).

Although the Upper Ojai Valley basin has the smallest storage capacity of the four basins, it serves as an important source of water for residents in Upper Ojai and some agricultural users. The basin is a bowl-shaped, unconfined basin filled predominately with alluvial fan deposits from erosions of the surrounding mountains. Depth to groundwater in this basin typically ranges from 45 to 60 feet below ground surface. The Upper Ojai Valley basin is currently managed by the Ojai Basin Groundwater Management Agency, who have authority to manage the supply and demand of the groundwater resources (Walter, 2015).

The Upper Ventura River basin is located under and adjacent to the Ventura River and flows from the Matilija Creek and North Fork Matilija Creek junction downgradient toward Foster Park. Although this basin is not the largest of the four basins, it supplies the greatest volume of groundwater in the watershed. The Upper Ventura River basin is unconfined, shallower than the Ojai Valley basins, and has a direct relationship with

surface water in the Ventura River. Much of the surface water in the river overlying this basin can become dry in low to moderate rainfall years. The subsurface diversion structure at Foster Park serves as the border between the Upper and Lower Ventura River basins (Walter, 2015).

The Lower Ventura River basin also lies under the Ventura River, starting from Foster Park and extending to the coast. This basin supplies the smallest water supply of the four basins and is used minimally for industrial and/or agricultural needs. The basin is unconfined and the depth to groundwater in the floodplain areas is typically between three and 13 feet, since depth to groundwater becomes deeper towards the edges of the basin (Walter, 2015).

1.2 Nutrient Loading in the Watershed

Water quality in the Ventura River Watershed is generally good. However, sections of the watershed are identified on the Federal Clean Water Act's (CWA) Section 303(d) list of impaired waterbodies for algae, low dissolved oxygen, high nitrogen, and eutrophic conditions. The most serious algae problems, in terms of the intensity of algae blooms, occur early in the dry season following a wet season with high rainfall and large storm events. Table 1 lists the 2016 Federal CWA 303(d) listed waterbodies within the Ventura River Watershed.

Table 1. 2016 CWA Section 303(d) Waterbodies in the Ventura River Watershed

Waterbody	Impairment	
San Antonio Creek (Tributary to Ventura River	Nitrogen, nutrients	
Reach 4)	_	
Canada Larga (Ventura River Watershed)	Dissolved oxygen, nutrients	
Ventura River Estuary	Algae, eutrophic, nutrients	
Ventura River Reach 1 and 2 (Estuary to	Algae, nutrients	
Weldon Canyon)	-	

According to the State OWTS Policy: Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems (OWTS), which became effective June 2012, if there is no TMDL or special provisions, all new or replacement OWTS within 600 feet of 303(d)-listed impaired water bodies are required to meet specific requirements, such as supplemental treatment for nitrogen and/or pathogen removal, and routine inspection and reporting (State Board, 2012).

In 2012, the Los Angeles Regional Water Quality Control Board (Regional Board) released the Resolution No. R12-011, Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries (Algae TMDL). This technical document provided a review of the data cited as the basis for why certain reaches of the Ventura River were added to the CWA 303(d) list of impaired water

bodies, including source assessment estimates for point and nonpoint sources. OWTS may be significant nonpoint sources of nutrient loading to subsurface and surface waters. The concern is that wastewater with high concentrations of nitrogen and phosphorus may seep into shallow groundwater and eventually enter surface waters.

The Algae TMDL became effective in June 2013, superseding the 600-foot setback requirements prescribed in the OWTS Policy. Nitrogen and phosphorus are the primary concern with excessive algae. Attachment A of the Algae TMDL identifies pollution source categories as point and nonpoint and differentiates between wet and dry weather estimated contributions (Regional Board, 2012). These values are summarized below:

Point Sources

- Storm water runoff discharged via municipal storm water system (MS4) –
 21.3% in dry weather; 28.3% in wet weather.
- Ojai Valley waste water treatment plant- 37.6% in dry weather; 1.7% in wet weather.

Nonpoint Sources

- Horses/livestock and agricultural land uses- 33.5% in dry weather; 36.1% in wet weather.
- Open space loading- 7.6% in dry weather; 19.1% in wet weather.
- Septic Systems (OWTS) 4.7% of annual nutrient load.
- Groundwater discharge 1.3% of annual nutrient load.
- Direct atmospheric deposition to the water surface 0.2% of annual nutrient load.

While multiple sources are identified in the Algae TMDL and there is a high amount of uncertainty in the estimates of sources of nitrogen, the Algae TMDL estimated that 4.7 percent of the total nitrogen contribution was from OWTS (Regional Board, 2012). The Algae TMDL requires a 50 percent load reduction for total nitrogen from OWTS for both dry and wet weather. These load reductions apply to all existing OWTS within the VRW.

Most parcels in the watershed are connected to a sanitary sewer system operated by either the Ojai Valley Sanitary District (City of Ojai and some surrounding areas) or the Ventura Water Reclamation Facility (City of Ventura), which treat sewage at centralized wastewater treatment facilities. However, a portion of the watershed, primarily unincorporated areas, is not serviced by these sanitary sewer systems and thus utilize OWTS for treatment of domestic wastewater. An estimated 2,874 parcels utilize OWTS for domestic wastewater disposal. Appendix 1-2 depicts a map of estimated OWTS parcels in the VRW.

This estimate is based on a review of permit applications and GIS data, and does not include parcels with OWTS which were identified as being within the service area of a sanitary sewer utility. The Division does not have permitting records of OWTS on

properties within the City of Ojai and the City of Ventura as these systems are permitted by their respective city building divisions and discharges are regulated by the Regional Board, Groundwater Permitting and Land Disposal Section. Similarly, the Division does not regulate mobile home parks. The California Department of Housing and Community Development is the building authority for mobile home parks. Although this information including a map was created very earlier on in the study and was presented to all TAC members for review as part of the Sampling Strategy in January 2017, the Division and Geosyntec were not aware of the OWTS information gaps until after all the sampling had occurred and the Technical Report was provided for TAC review in September 2018. Information on OWTS permitting for these parcels and how OWTS-related nutrient loading is going to be addressed, may be obtained by contacting the appropriate authority with jurisdiction.

1.3 Ventura River Watershed TMDL Special Study

The Algae TMDL recognizes that not all OWTS may be contributing to the impairment and allows for a special study to be conducted to further investigate the influence of OWTS on surface water quality. The overall goal of conducting a special study is to determine the geographic area(s) where OWTS are contributing to the algae impairment, allowing for total nitrogen load reductions to be targeted to OWTS that are impacting surface water quality. It is through a special study that the contributing area of OWTS may be modified.

On September 15, 2015 the Ventura County Board of Supervisors authorized the Director of the Ventura County Environmental Health Division (Division) to enter into a grant agreement with the State Water Resources Control Board (State Board) for a Clean Water Act 319(h) Nonpoint Source Program Grant in the amount of \$175,000. The purpose of this grant is to fund a special study to evaluate OWTS contribution to water quality impairments in the VRW (Algae TMDL Study).

Geosyntec Consultants is a specialized consulting and engineering firm contracted by the Division to assist in developing and implementing the Algae TMDL Study model. The services Geosyntec was contracted to provide include data collection and evaluation, analysis of groundwater and surface water quality in the project area, GIS mapping, preparation of sampling and monitoring plans, and the development of a Technical Report evaluating project results.

A Technical Advisory Committee (TAC) was developed to assist in the design and implementation of the Algae TMDL Study. Table 2 is a list of the TAC members. The TAC members reviewed and provided comments on the Sampling Strategy and preliminary GIS map, Monitoring Plan, Technical Report, and GIS map of high-risk OWTS areas. The TAC members also met to hear presentations on the Algae TMDL Study and provide comments before field sampling was initiated.

Table 2. Technical Advisory Committee Members

TAC Member	Organization		
Charles Genkel	Ventura County Environmental Health Division		
Ewelina Mutkowska	Ventura County Public Works, Watershed		
	Protection District, Stormwater Program Manager		
Kim Loeb	Ventura County Public Works, Watershed		
	Protection District, Groundwater Resources		
	Program Manager		
Steve Offerman	Office of Ventura County Supervisor Steve Bennett		
Greg Grant	City of Ojai Public Works		
Jennifer Tribo	City of Ventura		
Jenny Newman	Los Angeles Regional Water Quality Control Board		
Kevin DeLano	State Water Resources Control Board Department		
	of Water Rights		
Jeff Palmer	Ojai Valley Sanitation District		
Zoe Carlson	Ventura River Watershed Council		
Ben Pitterle	Santa Barbara ChannelKeeper		
Lexi Everhart	Ventura County Resource Conservation District		

2.0 Project Description

2.1 Project Type

The Algae TMDL Study is funded by a Federal Nonpoint Source Pollution Control Program CWA Section 319(h) Grant. This is a planning project which involved gathering and assessing water quality data to help determine the causes and sources of pollution. The data collected was analyzed to identify areas of OWTS that are contributing substantive nutrient loads to the Ventura River and its tributaries. These results were presented in a Technical Report and GIS map of high-risk OWTS areas (GIS Map). The Division utilized the results, Technical Report, and GIS Map to develop a Prescriptive Plan to identify potential strategies and implementation methods aimed at reducing nutrient pollution attributable to OWTS in targeted areas.

Activities supported by grant funds are defined as projects which must comply with the California Environmental Quality Act (CEQA). Activities for the Algae TMDL Study were limited to research, basic data evaluation, and water sampling from surface water locations and existing water wells. The Algae TMDL Study fits the criteria for a Class 6 Categorical Exemption as described in California Code of Regulations, Title 14, Section 15306 Information Collection. A Notice of Exemption (NOE) was submitted to the Ventura County Clerk and Recorder's Office on September 29, 2016 and was publicly posted from September 29, 2016 to December 5, 2016. This NOE was also submitted to the Office of Planning and Research State Clearinghouse on October 4, 2018 (see Appendix 5).

2.2 Project Cost

The State Board awarded the Division a CWA 319(h) Nonpoint Source Program Grant in the amount of \$175,000. The Division allocated the entire grant award to pay for services completed by Geosyntec Consultants. Most activities for the Algae TMDL Study, including development of the study design, field sampling, and development of the final Technical Report and GIS Map were made possible by the 319(h) Grant. The Division provided matching funds in the form of labor and some materials, such as ice. Laboratory analytical costs for nitrites, nitrates, ammonia and total nitrogen were covered by the Regional Board through the use of their contracted laboratory. The total cost of the Algae TMDL Study, including the State Board grant funds, Division labor matching costs, and Regional Board contract laboratory costs was \$271,074.91. Table 3 includes all funding sources utilized in the study with corresponding dollar amounts.

Table 3. Funding for Algae TMDL Study

Funding Source	Amount	
CWA 319(h) NPS Program Grant	\$175,000.00	
Labor Matching	\$82,836.91	
State Contract Lab Funds	\$13,238.00	

2.3 Project Goals and Schedule

The purpose of the Algae TMDL Study was to investigate the influence of OWTS on surface water quality and identify OWTS areas that are contributing to nutrient loading in the Ventura River and its tributaries. The goal of this project was to identify areas of OWTS and determine their relative degree of risk or likelihood of contributing to nutrient loading in the Ventura River and its tributaries, and to develop a plan to reduce nutrient loading attributable to OWTS. The general approach for accomplishing this can be described by study question. Sampling data collected during this study was evaluated and used to answer the following three study questions:

- 1. Are groundwater nitrogen levels elevated downgradient of OWTS areas (and if yes, which areas)?
- 2. Are these areas also impacted by sewage indicators that would further support OWTS as a source (if yes, which areas)?
- 3. Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations (if yes, downstream of which OWTS areas)?

A detailed timeline and list of deliverable items was part of the grant agreement. Table 4 is a list of the critical and estimated due dates for project milestones and deliverables as described in the Algae TMDL Study grant agreement.

Table 4. Project Milestones and Items for Review

ITEM	1 DESCRIPTION CRITICAL DUE ESTII DATE DUE					
	EXHIBIT A – SCOPE OF WORK – WORK TO BE PERFORMED BY THE GRANTEE					
A.	PLANS AND GENERAL COMPLIANCE REQUIREMENTS					
1.	All HUC-12s for Project Site	120 Days After Execution				
	Stream Reach for Project Site and Monitoring Locations	April 30, 2017				
2.	Project Assessment and Evaluation Plan (PAEP)	90 Days After Execution				
	Non Point Source Pollution Reduction Project Follow-up Survey Form	Annually by December 15th				
3.	Monitoring Plan (MP)	March 31, 2017				

	Monitoring Reports		Quarterly
4.	Quality Assurance Project Plan (QAPP)	May 31, 2017	
5.	Proof of Water Quality Data Submission to CEDEN	Before Final Invoice	
6.	Copy of Final CEQA/NEPA Documentation	September 30, 2016	
7.	Public Agency Approvals, Entitlements or Permits		As Needed
	Rights of Way Documentation		As Needed
B.	PROJECT-SPECIFIC REQUIREMENTS		
1.	Project Management		
1.2	Notification of Upcoming Meetings, Workshops, and Trainings		Ongoing
2.	Technical Advisory Committee (TAC)		
2.1	List of TAC Members with their Organizational Affiliation, and Roles and Responsibilities		August 2016
2.2	Agendas, Meeting Minutes, and Sign-In Sheets		Ongoing
3.	Preliminary Data Evaluation		
3.3	Preliminary GIS Map and Sampling Strategy January 30, 2017		
5.	Identify High Risk Areas		
5.3	Technical Report		October 2018
	EXHIBIT B – INVOICING, BUDGET DETAIL, AND REF	PORTING PROVISI	ONS
A.	INVOICING		Quarterly
F.	REPORTS		
1.	Progress Reports by the Twentieth (20th) of the Month Following the End of the Calendar Quarter (March, June, September, and December)		Quarterly
ITEM	DESCRIPTION	CRITICAL DUE DATE	ESTIMATED DUE DATE
	EXHIBIT B – INVOICING, BUDGET DETAIL, AND REF	PORTING PROVISI	ONS
2.	Annual Progress Summaries		Annually by 9/30
3.	Natural Resource Project Inventory (NRPI) Project Survey (If applicable)	Before Final Invoice	
4.	Draft Project Report	October 31, 2018	
5.	Final Project Report	December 31, 2018	

6.	Final Project Summary	Before Final Invoice				
7.	Final Project Inspection and Certification	N/A				
	EXHIBIT D -SPECIAL CONDITIONS					
1.	Lobbying Certification		With Final Report			
2.	MBE/WBE Documentation (http://www.epa.gov/osbp/pdfs/5700_52a.pdf)		Quarterly			

2.4 Methodology of Special Study

The Algae TMDL Study utilized a combination of historical data from OWTS records, surface and ground water quality analytics, and hydrogeology for the Ventura River, as well as field sampling activities, to identify and prioritize geographic areas within the VRW. The Algae TMDL Study used existing information of the area to identify data gaps in order to create a Sampling Strategy and preliminary GIS map of OWTS areas. A Monitoring Plan was developed which outlined the monitoring being conducted for this study. The Monitoring Plan included monitoring objectives, constituents to be monitored, and field sampling activities such as locations and frequencies. The final version of the MP was approved by the State Board and uploaded to the State Board's Financial Assistance Application Submittal Tool (FAAST) on October 9, 2017. A Quality Assurance Project Plan (QAPP) was also developed in accordance with the State Board's Surface Water Ambient Monitoring Program's QAPP guidelines. The QAPP was approved by the State Board in October 10, 2017. The historic information and the field sampling results from this study helped to identify areas most at risk of excessive nutrient loading.

2.4.1 Selection of Field Sampling Locations

A review of OWTS permitting records, surface and ground water quality analytics, and hydrogeology for the Ventura River area was done to identify areas of high OWTS use. Geosyntec identified over sixty groundwater wells located in these areas as potential groundwater sampling sites. Eight surface water sampling locations were selected in these areas as well, five along the Ventura River and three along the San Antonio Creek.

Since almost all of the groundwater wells are located on private property, requests for permission to sample these wells were sent to all the identified groundwater well property owners. Twenty-three property owners responded to the request to allow Division staff to enter their property to collect a water sample. All surface water locations were located on either publicly accessible land or on County-owned property. Appendix

1-3 shows the ground water wells and surface water locations sampled for the Algae TMDL Study.

Three sampling events, plus one location scouting event, were planned for the Algae TMDL Study. Four sampling events occurred according to the following time schedule: August 23-25, 2017; September 18-21, 2017; April 2-6, 2018; and May 14-17, 2018. More details on the field sampling are provided in Section 3.2 of this report.

2.4.2 Analytical Data

Water samples collected were analyzed for numerous contaminants to measure potential OWTS contribution to nutrient loading in the VRW. Multiple laboratories were contracted to analyze the water samples. Table 5 shows the contaminants analyzed, the laboratory analytical methods used, and the laboratories which performed the analysis.

Table 5. List of Analytes

Analyte	Method	Laboratory
Ammonia	EPA 350.1	Institute for Integrated Research in Materials, Environments & Society (IIRMES) / Physis Environmental Laboratories, Inc.; Enthalpy Analytical, LLC; Weck Laboratories, Inc.
Total Nitrogen	Direct Method (Physis) ALCH 4025 (IIRMES)	Institute for Integrated Research in Materials, Environments & Society (IIRMES) / Physis Environmental Laboratories, Inc.; Enthalpy Analytical, LLC
Total Nitrogen	EPA 351.2	Weck Laboratories, Inc. (for samples taken on April 6, 2018 only)
Nitrate + Nitrite	EPA 300.0	Institute for Integrated Research in Materials, Environments & Society (IIRMES) / Physis Environmental Laboratories, Inc.; Enthalpy Analytical, LLC; Weck Laboratories, Inc.
Nitrate Isotope ¹⁸ [O-NO ₃]	Adapted from USGS method 2900	Source Molecular
Nitrate Isotope ¹⁵ [N-NO ₃]	Adapted from USGS method 2900	Source Molecular
Pharmaceuticals and Personal Care Products (PPCPs)	EPA 1694M-ESI+	Weck Laboratories, Inc.

Once all the laboratory analytical results were received, Geosyntec staff evaluated the data and generated a GIS map of high-risk OWTS areas and a Technical Report interpreting the results (see Appendix 1-4 and Appendix 3).

3.0 Project Evaluation and Effectiveness

3.1 Project Objectives

The purpose of the Algae TMDL Study was to investigate the influence OWTS on surface water quality in the VRW. The goal of this project was to identify areas of OWTS and determine their relative degree of risk or likelihood of contributing to nutrient loading in the Ventura River and its tributaries.

The Algae TMDL Study utilized existing information of the area to develop a Sampling Strategy and preliminary GIS map. The historic information and the sampling results helped identify areas most at risk of significant and potential nutrient loading by OWTS. The desired outcome of this project was the preparation of a Technical Report and final GIS Map for the VRW that identifies areas of nutrient loading attributable to OWTS. This GIS Map and Technical Report helped Division staff create a Prescriptive Plan to identify options to address the OWTS areas identified as contributing to nutrient loading.

A Project Assessment and Evaluation Plan (PAEP) was developed to identify the tasks and objectives of the Algae TMDL Study. The PAEP included three project task categories which described the development and progression of the Algae TMDL Study. The three tasks, and how they were addressed during the study, are listed below:

• Task 1: Project Development and Administration

"A project management team will be established. A consultant will be selected to conduct research and help develop a work plan. The appropriate CEQA documentation will be prepared and recorded at the Ventura County Clerk's office. Available data will be compiled from existing sources and studies, such as watershed plans and water quality sampling plans. Areas where more data or study is needed will be identified by reviewing the existing data. A preliminary GIS map displaying results of the historical data research will be prepared."

A team comprised of Division staff was selected and Geosyntec Consulting was contracted to develop the Algae TMDL Study work plans and reports. To comply with CEQA, a NOE was submitted to the Ventura County Clerk and Recorder's Office on September 29, 2016, and was publicly posted from September 29, 2016, to December 5, 2016. The NOE was also submitted to the Office of Planning and Research State Clearinghouse on October 4, 2018 and is included in this report as Appendix 5. Geosyntec reviewed available OWTS data for the watershed and developed a preliminary GIS map, a Sampling Strategy and a Monitoring Plan to address data gaps.

• Task 2: Data Collection and Analysis

"Field data will be collected and evaluated as needed to fill in the data gaps which were revealed during Task 1. Data results collected from the field will be evaluated to determine if the remaining areas (data gaps) are potential sources of contamination in the watershed. The existing nitrogen loading from OWTS will be identified. All project analytical and sampling data will be submitted following Surface Water Ambient Monitoring Program (SWAMP) and State Board's required formats including upload to the California Environmental Data Exchange Network (CEDEN) database if needed. Historical data and data acquired from field sampling will be used to create a GIS map of OWTS areas in the Ventura River Watershed. The map will show OWTS areas at high risk of contributing to nutrient loading in the watershed."

Groundwater and surface water sampling locations were selected and sampled on multiple occasions. An account specific to the Algae TMDL Study was created in CEDEN and all laboratory analytical data was uploaded. Geosyntec evaluated the analytical data and presented the findings in a Technical Report and GIS map delineating areas of OWTS in the Ventura River Watershed designated at high risk of contributing to nutrient loading.

Task 3: Project Administration

"Data will be analyzed to identify and prioritize geographic areas within the watershed wherein management measures/practices will be necessary to reduce OWTS pollution. A Prescriptive Plan, including management measures for nutrient reduction from OWTS, will be developed. An advanced protection management plan is intended to prohibit or reduce nitrogen impacts from OWTS on the watershed. Draft and final reports will be prepared with project outcomes. The Algae TMDL Special Study project management team will coordinate and consult with the Regional Board to achieve the targets of the Algae TMDL and goals of the statewide OWTS Policy."

The Division developed a Prescriptive Plan (see Appendix 2) to identify options and strategies aimed at reducing nutrient loading to the VRW which are attributable to OWTS. The Prescriptive Plan is described briefly in Section 4.0 of this report.

Performance measures were also developed and described in the PAEP. These performance measures identify output indicators and outcomes to track activities and deliverables, measurement tools and methods which describe how the project performance will be documented, and measurable targets to be met during the project period.

Table 6 describes the project performance measures from the PAEP and includes the project goal, desired outcome, output and outcome indicators, measurement tools and methods, targets, and results of the Algae TMDL Study.

Table 6. Ventura River OWTS Special Study Project Performance Measures

Project Goal	Identify areas of OWTS and determine their relative degree of risk or likelihood of contributing to nutrient loading in the Ventura River and its tributaries. Develop a plan to reduce nutrient loading from OWTS.
Desired Outcome	Documentation of the OWTS areas mostly likely to contribute significantly to excessive nutrientloading and a plan to reduce nutrient loading from OWTS in the Ventura River Watershed.
Output Indicators	 Preliminary GIS map of OWTS and relevant watershedfeatures Sampling strategy,monitoring plan, and quality assurance project plan for field sampling events.
Outcome Indicators	 Final GIS map delineating areas of OWTS in the Ventura River Watershed designated at high risk of contributing to nutrient loading Technical Report to accompany final GIS Map
Measurement Tools and Methods	 Historical data from OWTS records, surface and ground water quality, and hydrogeology for the Ventura River. Field sampling and monitoring plan results
Targets	Broad acceptance of Prescriptive Plan and supporting basis in technical report and GIS map.

The Algae TMDL Study was successful at meeting the stated project goals and desired outcomes. The Technical Report (Appendix 3) and GIS Map of high-risk OWTS areas (Appendix 1-4) were developed by Geosyntec Consultants. A Prescriptive Plan (Appendix 2) was prepared by Division staff based on the study results.

3.2 Project Challenges

The Algae TMDL Study project team encountered a variety of challenges, including access and availability of water sources to sample, delays in receiving laboratory analytical results, the 2017 Thomas Fire, unidentified data gaps, and time and budget constraints.

3.2.1 Dry Surface Water

Three sampling events, plus one location scouting event, were planned for the Algae TMDL Study. Initially, the events were planned for August and September, October, and November 2017. During the August and September 2017 field sampling events, it was

noted that most surface water sites were dry and were not able to be sampled (see Appendix 4, photographs 6 and 7 for an example). Surface water sampling is an important component of this study to investigate the impact of OWTS on surface water quality, so a request to extend the grant deadline was approved by the State Board. This time extension allowed the remaining two water sampling events to be conducted sometime between November 2017 and March 2018, after winter rainfall had recharged groundwater to the point where more surface water locations were flowing. The December 2017 Thomas Fire made it necessary to delay the remaining sampling events further, as described in Section 3.2.3 of this report. The remaining two week-long sampling events were completed in April 2018 and May 2018.

3.2.2 Access to Groundwater Wells

Since almost all of the groundwater wells are located on private property, requests for permission to sample these wells were sent out to over sixty groundwater well property owners. Twenty-three property owners responded to the request allowing Division staff to enter their property to obtain a water sample. It was discovered during the first sampling event that three of the wells were not sampleable due to the following reasons:

- One well (GW-B-01) did not have a pump or sample port and was filled with rocks.
- Another well (GW-C-01) pumped into a large reservoir. Water from sample port is obtained from this reservoir and not from the ground. It was determined this would not be representative of groundwater in the area.
- The third well (GW-B-05) was open and not protected from surface contamination. Staff observed trash inside the well, so it was determined that water from this well would also not be representative of the groundwater in the area.

Field sampling staff identified a previously unidentified groundwater well in sample area D to include as part of the study (GW-D-07).

3.2.3 Thomas Fire

The Thomas Fire started in Ventura County on December 4, 2017. It spread very quickly through northern Ventura County, including around the VRW. The sample locations were not directly affected by the Thomas Fire in terms of fire damage, however, the area was inaccessible while the fire remained active and for several weeks afterwards. Division staff and resources were redirected to address fire recovery

and debris removal needs. Once the debris removal activities were mostly completed Division staff scheduled and conducted the remaining two sampling events in April 2018 and May 2018.

The fires may have affected the April and May 2018 field sampling due to ash and fire retardants used during firefighting activities, as well as runoff issues from post-Thomas Fire rainfall events. For example, sediment from the January 2018 rainfall may have prevented the usual amount of groundwater recharge in certain areas. Instead of infiltrating, runoff entered the Ventura River creating an unusual amount of surface water for the season.

3.2.4 Laboratory Delays

Laboratory reports for the water analytical results from Weck Laboratories and IIRMES were generated and received by Geosyntec within six weeks of the final field sample date. Laboratory results from Source Molecular were delayed and were received sixty days after the samples were sent as opposed to ten days. This delay in receipt of the laboratory reports meant that the Draft Project Report, Technical Report, and GIS Map deliverables were not completed by the critical due dates. Another request to extend the grant deadline was submitted and approved by the State Board to allow for sufficient time to generate the reports and map, as well as ensure the TAC group was provided with sufficient time to review and provide comments for the Technical Report.

3.2.5 Data Gaps

Geosyntec conducted an extensive review of historical information from Ventura County Environmental Health and Ventura County Watershed Protection District related to hydrology, surface water quality conditions, and OWTS permits. All this information was utilized when developing the study design, Sampling Strategy, Monitoring Plan, GIS Map, and Technical Report. TAC members were allowed to comment on these plans/reports. Deficiencies in the project design resulting from unidentified or underutilized data were not identified or commented on by TAC members until after the sampling portion of study was completed and the draft Technical Report was provided for review. As a result, it was not possible to fully address some concerns raised by TAC members (see Appendices 3-2 and 3-3).

OWTS areas were identified by Geosyntec staff based on the permitting information and GIS mapping. A map of OWTS areas was created based on this information (Appendix 1-2). However, all OWTS areas in the City of Ojai and the area of Ojai known as the

Arbolata, as well as mobile homes parks, were not all included in this map. Although this map was created very earlier on in the study and was presented to all TAC members for review as part of the Sampling Strategy in January 2017, this oversight was not identified until after all the sampling has occurred and the Technical Report was provided for TAC review in September 2018.

On their own the final analytical results of the Algae TMDL Study do not provide sufficient evidence to exclude any potentially contributing OWTS areas. However, the data gaps identified in the study design do not negate the usefulness and meaningfulness of the results. Data collected and analyzed in this study will be incorporated into other studies and will be used to create meaningful and appropriate policies and management strategies for nutrient reduction in the VRW. Further investigation and discussions with stakeholders and the Regional Board will be required to further define OWTS contributing areas.

3.2.6 Time and Budget Limitations

State Board, Regional Board, Geosyntec and Division staff carefully developed a schedule and budget for the Algae TMDL Study. However, a variety of factors resulted in the need for time extensions and budget overages. The Monitoring Plan, QAPP, and Technical Report and GIS Map are deliverables which required TAC review as well as acceptance from the State and Regional Boards. Numerous revisions of these plans resulted in more time and grant funds being spent than previously budgeted. Geosyntec's fees exceeded the grant amount by \$7,271.40.

3.3 Discussion of Study Results

Geosyntec evaluated the analytical data and presented the findings in a Technical Report and GIS Map delineating areas of OWTS in the VRW designated at high risk of contributing to nutrient loading. The Algae TMDL Study segregated groundwater and surface water sampling locations in to groups identified by the letters A-G. Sampling data collected during this study were evaluated and used to answer the three study questions described in Section 2.3 of this report. Appendix 1-3 shows the ground water wells and surface water locations sampled for the Algae TMDL Study.

3.3.1 Groundwater

Sampling results from group A revealed nutrient, PPCP, and nitrate isotope results which suggest groundwater in group A is likely influenced by upgradient OWTS, and

that surface water was likely impacted by the groundwater analyzed in group A (Geosyntec, 2018).

Group B results showed nutrient, PPCP, and nitrate isotope results which suggest that groundwater in group B is likely influenced by upgradient OWTS, although to a lesser extent compared to group A based a lower density of upgradient OWTS and lower average nitrate concentrations in groundwater (Geosyntec, 2018).

Group C consists of three groundwater wells that are located in an area classified as bedrock, but where shallow alluvium is most likely present. Nutrient, PPCP, and nitrate isotope results all suggest that groundwater in group C is likely influenced by upgradient OWTS at a similar level to group B (Geosyntec, 2018).

Group D wells were located along the San Antonio Creek and were not in close proximity to one another. Group D results indicated that groundwater may be influenced by upgradient OWTS, although not to the same extent as other groups (Geosyntec, 2018).

Group E is located in an area east of the City of Ojai and included two groundwater wells along San Antonio Creek that were considered to have medium density upgradient OWTS. Analytical results suggest it is likely that groundwater in this area is influenced by nearby OWTS (Geosyntec, 2018).

Group F consisted of one groundwater well with medium density upgradient OWTS located near Coyote Creek below Casitas Dam in an area with bedrock geology. Group F results suggest it is highly likely that groundwater in these bedrock areas is influenced by OWTS (Geosyntec, 2018).

Wells in group G consisted of two groundwater wells, both considered to have medium upgradient OWTS density. Group G results suggest it is highly likely that groundwater in these bedrock areas is influenced by OWTS (Geosyntec, 2018).

3.3.2 Surface Water

The group A surface water sampling location on the Ventura River, just downstream of the groundwater wells, had the highest average nitrate concentration of all surface water locations, yet no PPCPs were detected in surface water and the nitrate isotope ratios were lower than that of the nearby groundwater wells. The high nitrate levels suggest that surface water at this location was likely impacted by the groundwater analyzed in group A, but other sources of nitrate could also be potentially impacting surface waters in this stream reach such as land application of animal manure on upgradient croplands and orchards (Geosyntec, 2018).

Both the upstream and downstream surface water locations in group B had average concentrations of nitrate less than 1.15 mg/L, no detected PPCPs, and nitrate isotope

ratios lower than that of the nearby groundwater wells. These results were unable to verify that surface water in Group B is impacted by the nearby groundwater analyzed in Group B. Although OWTS contribution cannot be completely ruled out, other sources of nitrate contribution may be impacting surface waters in this stream reach (Geosyntec, 2018).

Group C consisted of two surface water sampling locations (one upstream and one downstream of the group C wells), and is a reach identified as consistently upwelling. No PPCPs were detected in group C surface water locations and had nitrate concentration between 1.0 – 1.4 mg/L. All locations in group C had sources identified as animal waste and/or sewage based on the analysis of nitrate isotopes. Although OWTS contribution cannot be completely ruled out, other sources of nitrate contribution may be impacting surface waters in this stream reach (Geosyntec, 2018).

There were two group D surface water sampling locations along the San Antonio Creek. The upstream location was high in nitrates (2.7 mg/L average) and the downstream location was low in nitrates (0.75 mg/L average). Group D was considered to have animal waste and/or sewage sources based on the nitrate isotope analysis. Although OWTS contribution cannot be completely ruled out, other sources of nitrate contribution may be impacting surface waters in this stream reach. Upstream nitrogen loading may be from OWTS and/or animal manure sources from cropland/irrigated pastureland. The City of Ojai could also be contributing urban runoff and runoff from residential fertilizer use and golf courses (Geosyntec, 2018).

Group E consisted of one surface sampling location in Soule Park Golf Course, downstream from the two groundwater wells. The group E surface water location had an average nitrate concentration of 1.4 mg/L, no detected PPCPs, and nitrate isotope results suggesting nitrate sources from animal waste and/or sewage. Large portions of the surrounding area are utilized for orchards and vineyards, so land application of manure may also be a contributing source of nitrate. Based on these results, it is likely that groundwater and surface waters in this area are influenced by nearby OWTS (Geosyntec, 2018).

The surface water sampling location for group F was located in Foster Park, downstream from the group F well. OWTS density was characterized as low. Although OWTS contribution cannot be completely ruled out, other sources of nitrate contribution may be impacting surface waters in this stream reach (Geosyntec, 2018).

Group G groundwater wells are located in far proximity to surface water locations. No OWTS influence vs distance relationships could be established. Therefore, it is unknown whether surface waters would be impacted by nearby OWTS areas in group G. OWTS contribution cannot be completely ruled out (Geosyntec, 2018).

3.3.3 Areas of OWTS Influence

A relationship between the nitrate concentration in groundwater and the density of upgradient OWTS was found, and this relationship was extrapolated to unsampled areas of the VRW by first defining the density of OWTS throughout the watershed. The strongest relationship between nitrate in surface water and upgradient OWTS for sampled wells was found for an upgradient area of influence within 2,000 feet (Geosyntec, 2018).

Surface water sample results (both from this study and historically) in close proximity and downgradient of OWTS were examined to determine if average surface water nitrate levels were generally high compared to the allowable in-stream concentration of 1.15 mg/L for total nitrogen (TN). If groundwater was identified as being likely influenced by OWTS (based on medium or high density OWTS) but available surface water data just downstream did not suggest surface water impacts (i.e., low nitrate levels), the area was identified as "potential" risk for surface water impairment. However, if an area was identified as likely having influence from OWTS in groundwater (i.e., medium or high density OWTS), and surface water sampling results show elevated levels of nitrate, the area was identified as having "high" risk of surface water contamination due to OWTS (Geosyntec, 2018).

It is important to note that the study used average nitrate concentrations across events. The use of average nitrate concentrations is a less protective basis for evaluating water quality than was utilized in the development of the Algae TMDL and may have resulted in fewer OWTS areas being identified as contributing to surface water impairments.

As previously mentioned, the general approach for accomplishing this can be described by answering three study questions, and the sampling data collected was used to answer these questions (Geosyntec, 2018):

Question 1: Are groundwater nitrogen levels elevated downgradient of OWTS areas (and if yes, which areas)?

Areas with OWTS throughout the VRW were previously identified, and groundwater wells located downgradient of these areas with OWTS were sampled and analyzed for nutrient levels. Areas with high observed nitrate levels were noted. It should be

noted that the average nitrate concentration in the background wells was 0.77 mg/L. Therefore, background nitrate levels in groundwater were also considered when evaluating whether nitrate levels were elevated.

Nitrate in groundwater was elevated downgradient of areas with OWTS throughout the VRW. The average nitrate concentrations for all groups, except group D (low density OWTS) and the background wells, were above the TMDL allowable in-stream concentration. Group D had one of three wells above the target. The number of OWTS within a certain distance upgradient of each well was found to be significantly correlated with groundwater nitrate concentrations in alluvial areas. Nitrate was also found to be elevated where OWTS were in areas identified as bedrock geology.

Question 2: Are these areas also impacted by sewage indicators that would further support OWTS as a source (if yes, which areas)?

Within the areas that were identified with high nitrate levels in groundwater, it was then determined if these high nutrient levels were potentially caused by OWTS. Analysis of PPCPs (as chemical sewage indicators) and stable nitrate isotopes were conducted. Detections of PPCPs and nitrate isotope ratios matching sewage sources would suggest the presence of sewage (i.e., influence from OWTS) in groundwater.

At least one PPCP was detected in groundwater downgradient of OTWS in each groundwater sampling group, with multiple PPCPs detected in some wells. Nitrate isotope ratios also suggested that groundwater was impacted by animal waste and/or human sewage throughout the VRW. Therefore, both chemical (PPCP) and isotope data supports OWTS effluent as a source of nitrate to groundwater in the VRW.

Question 3: Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations (if yes, downstream of which OWTS areas)?

Finally, surface water data was also examined to determine if high nitrogen concentrations, in addition to the presence of PPCPs and/or nitrate isotopes matching sewage sources, were present in the areas where influence to groundwater from OWTS was determined to be likely (based on the analyses described above). This was examined in upwelling areas, where groundwater and surface water interactions are likely.

While OWTS influence to groundwater were evident throughout the watershed, the impacts to surface waters during dry weather were not as ubiquitous. At many locations on the impaired streams, average nitrate, both historically and in this study, were below the TMDL allowable in-stream concentration for TN.

4.0 Study Conclusions and Next Steps

4.1 Analysis of Results

Attachment A of the Algae TMDL estimated nutrient contributions to the watershed from point and nonpoint sources, including OWTS. Each source was assigned load allocations (LA) aimed at reducing nutrient loading to meet water quality objectives and/or maintain existing discharge quality. The LAs for OWTS are equal to 7,478 pounds TN per year based on a required 50 percent reduction in loading. They are to be implemented through discharge prohibitions, waste discharge requirements (WDR) and WDR waivers. According to the Regulatory Provisions in Attachment A of the Algae TMDL, existing OWTS are required to be upgraded or modified to enhance their nitrogen removal or meet other requirements if it is determined they are contributing to the impairment. These systems are either covered by approved special provisions of a LAMP, or if the Regional Board issues subsequent orders requiring upgrades or modifications (Regional Board, 2012).

The purpose of the Algae TMDL Study was to investigate the influence of OWTS on surface water quality and determine relative risks or likelihood of OWTS areas which may be contributing to nutrient loading in the Ventura River and its tributaries. The highest risk of contribution to surface waters was found to be where OWTS are in close proximity to these surface water reaches. Because the correlation between nitrate and OWTS density was found to be the strongest using an upgradient area of influence for the sampled wells within 2,000 feet, an area of impact was established around the impaired waterbodies 2,000 feet in length on either side (Geosyntec, 2018).

To summarize, the determination of risk levels for surface water contamination to the impaired reaches from OWTS for the entire VRW are as follows:

- Low density OWTS (within 2,000 ft buffer of impaired reaches) or not within
 2,000 ft buffer of impaired reaches = Low risk of surface water contamination.
- Medium and high density OWTS (within 2,000 ft buffer of impaired reaches) = high risk or potential risk of surface water contamination based on downgradient surface water nitrate levels observed in the study and historically.

The results of this study suggest OWTS in high risk areas are likely to influence TMDL-listed surface waters. During this study, the surface waters found to be elevated for nitrogen during dry weather were located downgradient of OWTS groups A and E, near the community of Mira Monte and east of Ojai, respectively. A community known as the Siete Robles Tract is located within group E and is an area known for OWTS-related concerns due to elevated groundwater conditions and poor soil percolation and absorption characteristics. Appendix 6 is an Advisory Notice for OWTS in the Siete Robles Tract. Initial future actions aimed at reducing nutrient loading in the VRW shall prioritize these high-risk, high OWTS density areas.

For OWTS in areas identified as potential risk areas, results suggest that groundwater is likely being influenced by OWTS and has the potential to impact surface waters, but there is not sufficient evidence of surface water impacts. Finally, OWTS in the areas identified as low risk were shown to as not likely to significantly contribute nitrates to impaired surface waters (Geosyntec, 2018).

Data gaps in the Algae TMDL Study design mean the study results alone are not sufficient to support ruling out the possibility that significant nutrient loading from OWTS is not occurring or likely to occur in the low or potential risk areas. Further investigation and discussions with the Regional Board would be required to determine if OWTS nutrient contributions in low and potential risk areas are significantly contributing to exceedances of the TMDL allowable in-stream concentrations for nitrogen in surface waters to justify the cost of implementing nutrient-reducing policies and technologies (i.e., sanitary sewer connection or requiring the installation of a nitrate-removal unit / OWTS upgrade) to property owners and the community.

Table 7. Summary of Sampling Data Conclusions by Group

Croun	Groundwater - Groundwater - Groundwater under influence of		Surface Water – high	Surface water - risk level of contamination from OWTS	
Group	- high nitrate	OWTS (PPCPs and isotopes)	downgradient - average nitrate	This study ¹	Historical ²
Α	✓	✓	✓	High	Low
В	✓	✓	×	Low	Low
С	✓	✓	*	Low	Low
D	✓	✓	×	Low	Low
Е	✓	✓	✓	High	High
F	√	√	×	Low	Low
G	✓	✓	Undetermined ³	Undetermined ³	Undetermined ³

¹ Conclusion is based on surface water quality data collected during this study

4.2 Current OWTS Regulations in Ventura County

4.2.1 State OWTS Policy and LAMP

The State Board's Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems (OWTS Policy) was adopted in 2012. The OWTS Policy describes minimum OWTS requirements for OWTS in California. Although the State Board implements the OWTS Policy, Tier 2 of the OWTS Policy allows local jurisdictions to develop a Local Agency Management Program

² Conclusion is based on available historical surface water quality data

³This medium density area was distant from impaired surface waters. Further investigation is recommended to determine if downgradient surface waters could be impacted.

(LAMP) which meets or exceeds the State Board's minimum criteria. The Ventura County LAMP was approved by the Regional Board Executive Officer on May 4, 2018, and by the Ventura County Board of Supervisors (BOS) on August 6, 2018.

Tier 3 of the OWTS Policy describes specific OWTS criteria for areas which, due to geographic conditions or a TMDL, require additional technology and/or monitoring to ensure they are not contributing to groundwater contamination or creating a public health concern. New or replacement OWTS within these areas are required to meet supplemental treatment requirements for nitrogen as described in Tier 3 of the OWTS Policy (State Board, 2012). The Ventura County LAMP includes an Advanced Protection Management Program (APMP) for individual OWTS and OWTS areas which require advanced technologies in unincorporated Ventura County (Division, 2018).

4.2.2 Ventura County Building Code

The Ventura County Building Code (VCBC) includes regulations and design requirements for new and existing OWTS in unincorporated Ventura County. VCBC Appendix H, section 13.0(E) describes design and monitoring requirements for OWTS which require advanced treatment units (ATU) in order to meet discharge requirements.

Section 713.4 of the VCBC details the requirements to connect to a sewer utility when available. If a property requires the installation, repair, or replacement of a conventional OWTS, but is located within 200 feet of an available public sewer utility line, connection to public sewer is required. Likewise, if a property requires the installation, repair, or replacement of an alternate OWTS (such as a mound system, subsurface sand filtration system, and/or ATU to remove nitrogen or pathogens) but is located within one-half mile (2,640-feet) of an available public sewer utility line, connection to public sewer is required (VCBC 2016).

4.3 Summary of Prescriptive Plan

The Division developed a Prescriptive Plan to address the need to reduce nutrient loading to the VRW attributable to OWTS. Development of the Prescriptive Plan utilized current OWTS permitting criteria, historical geologic and water quality data, and the Technical Report and GIS Map developed during the Algae TMDL Study which were made possible by the 319(h) grant. The Prescriptive Plan describes different options and "paths forward" available to property owners, communities, and regulators, as well as evidence and supporting statements which reinforce how the implementation of the options will be effective in reducing OWTS-related nutrient loading as required in the Algae TMDL (Regional Board, 2012). The complete Prescriptive Plan is provided as Appendix 2 of this report.

The State Board is developing a surface water-groundwater nutrient transport model for the VRW. This model is expected to compute groundwater gradient and velocity for every grid cell in the watershed, as well as travel time and denitrification from each grid

cell to surface water. Field sampling data analysis from the Algae TMDL Study will be utilized in the development of this model. The nitrogen transport model will aid in achieving the nutrient load reductions set forth in the Algae TMDL by providing a tool for nitrogen source assessment (Geosyntec 2018). Once this model has been developed and approved, the Division will work with stakeholders to determine how best to utilize this new tool to address nutrient loading attributable to OWTS in the watershed.

Local property owners, City and County staff and elected officials, and Regional Board staff will work together to develop implementation methods to address nutrient loading from OWTS in the Ventura River Watershed. The development of strategic and integrated approach will meet the goal of 50% reduction in loading from OWTS, without causing undue financial hardship to property owners.

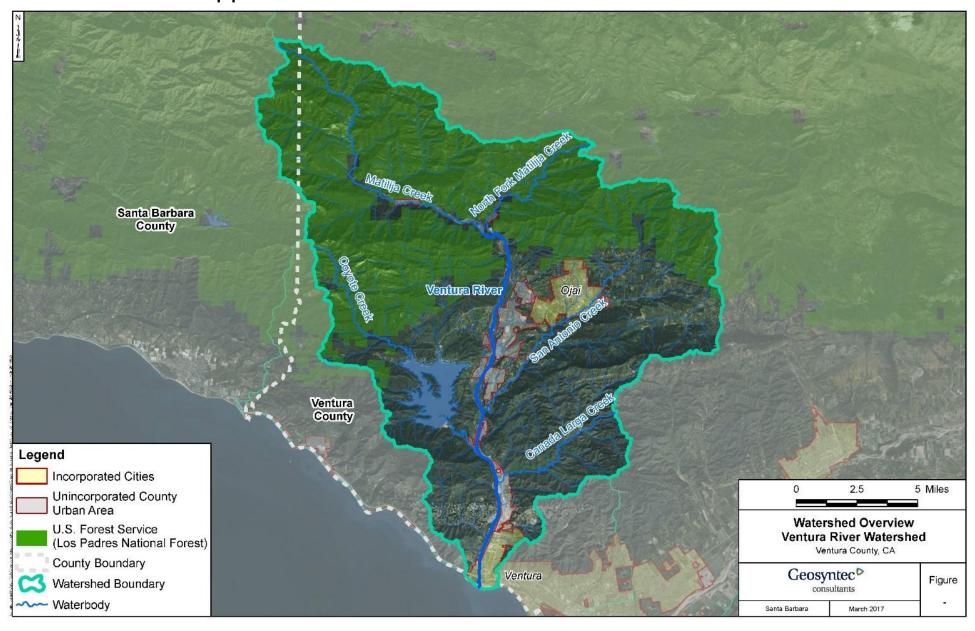
4.4 Public outreach

The Division has participated in public outreach activities throughout the Algae TMDL Study process and will continue to do so during continued efforts to address nutrient loading attributable to OWTS in the VRW.

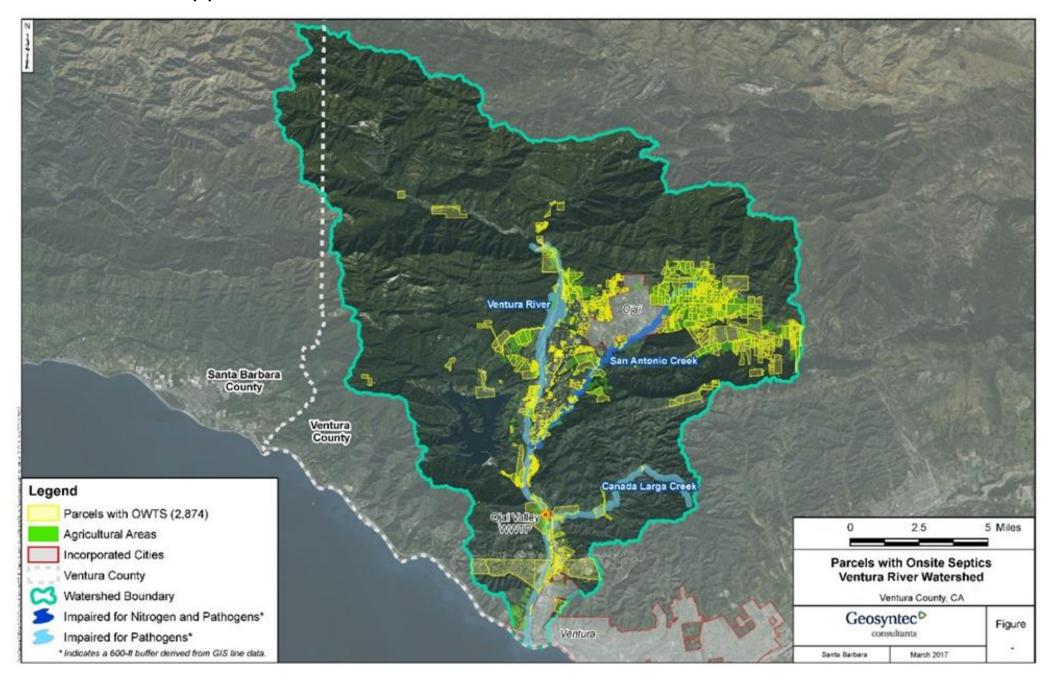
As mentioned earlier in this report, a TAC was developed as a part of this project. There are many individuals and organizations who have a vested interest in the results of the Algae TMDL Study and any actions and/or decisions affecting the VRW. These include property owners, local and State regulators, City and County elected officials, local water and sewer utilities, and non-profit organizations. Several of these stakeholder entities participated as TAC members for this study.

Division staff provided direct outreach to water well property owners during the presampling stage of the Algae TMDL Study. Consultations, both written and verbal (phone calls and in-person), were conducted with property owners to explain the purpose of the field sampling events and possible outcomes/uses for the results. Water quality data was provided to property owners when requested.

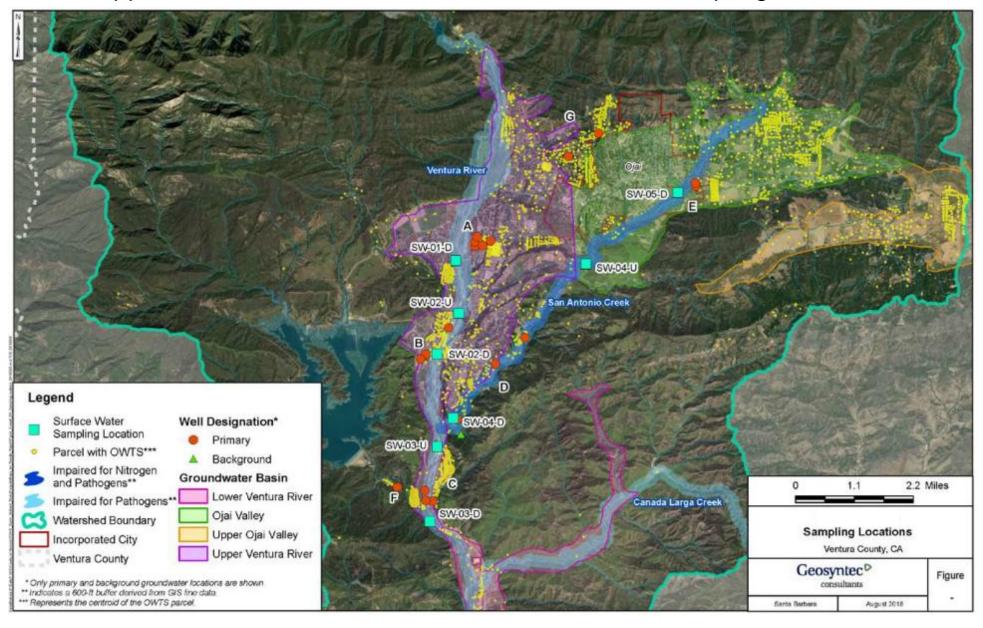
Division staff and Geosyntec consultants co-presented an overview of the Algae TMDL Study at the California Stormwater Quality Association conference in Riverside, CA on October 17, 2018.

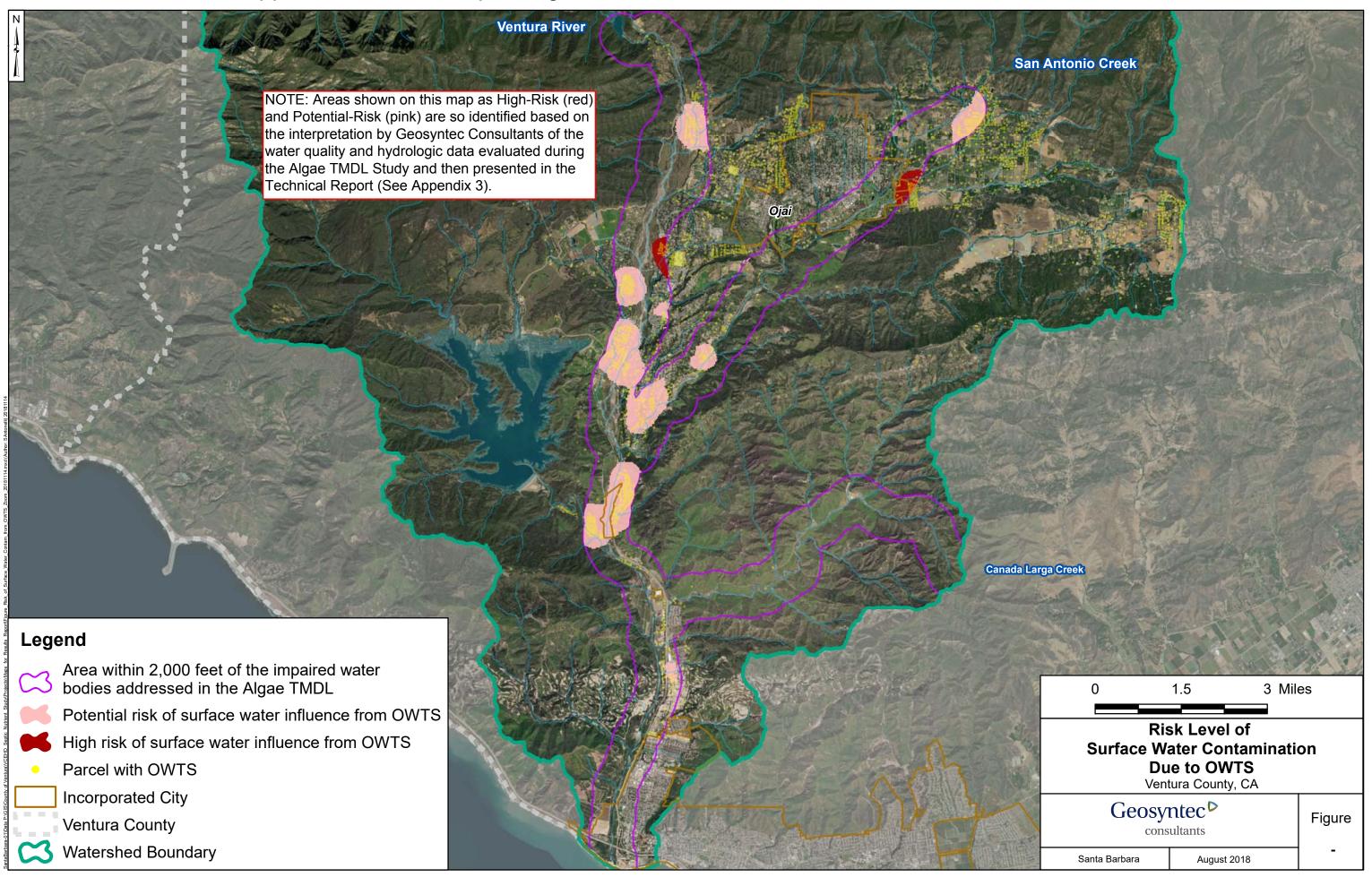

The Division will continue to meet and network with stakeholders, in both the regulatory arena and in the affected community, to help develop solutions to address OWTS-related nutrient loading in the VRW. The Division will present the finding of the Algae TMDL Study to the Ventura County BOS, a public venue. The results and any guidance information will be provided to the public on the Division's website. Public meetings

and/or workshops will be scheduled to gain input from the community during the development of any implementation plans and strategies. The Division will provide support to the State Board and the Regional Board during the plan development and decision-making processes.


5.0 References

- Cardno ENTRIX, 2012. *Ventura River Watershed Protection Plan Report.* Prepared for the Ventura County Watershed Protection District. February 2012.
- California State Water Resources Control Board (State Board), 2012. OWTS Policy: Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems. June 2012.
- Geosyntec Consultants, 2017a. Monitoring Plan for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. September 2017.
- Geosyntec Consultants, 2017b. Quality Assurance Project Plan (QAPP) for the Monitoring Plan for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. September 2017.
- Geosyntec Consultants, 2018. Technical Report for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. November 2018.
- Los Angeles Region Water Quality Control Board (Regional Board), 2012. *Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries*. December 2012.
- U.S. Environmental Protection Agency (USEPA). 2010. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. EQASOP-GW 001. Region 1. January 19, 2010.
- U.S. Geological Survey. (USGS). 2006. *Collection of water samples (ver. 2.0): U.S. Geological Survey Techniques of Water-Resources Investigations*, book 9, chap. A4, September, accessed May 2, 2011, at http://pubs.water.usgs.gov/twri9A4/. September.
- Ventura County Building and Safety Division. 2016. *Ventura County 2016 Building Code (VCBC), Ordinance Number 4496.* 2016 Edition. Effective date January 1, 2017.
- Ventura County Environmental Health Division, 2018. Ventura County Environmental Health Division Local Agency Management Program for Onsite Wastewater Treatment Systems (LAMP). Effective date August 7, 2018.
- Walter, L, 2015. *Ventura River Watershed Management Plan.* Prepared for the Ventura River Watershed Council. March 2015.


Appendix 1-1: Overview of Ventura River Watershed


Appendix 1-2: OWTS Parcels in the Ventura River Watershed

Appendix 1-3: Surface Water and Groundwater Sampling Locations

Appendix 1-4: GIS Map of High-Risk OWTS Areas in the Ventura River Watershed

Appendix 2: Algae TMDL Special Study Prescriptive Plan

Purpose

In 2012, the Los Angeles Regional Water Quality Control Board (Regional Board) released the Resolution No. R12-011, the Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries (Algae TMDL). The Ventura County Environmental Health Division (Division) entered into a grant agreement with the State Water Resources Control Board (State Board) for a Clean Water Act 319(h) Nonpoint Source Program Grant in the amount of \$175,000. The purpose of this grant was to fund a special study to evaluate onsite wastewater treatment system (OWTS) contribution to water quality impairments in the Ventura River Watershed (Algae TMDL Study). The grant agreement detailed works to be completed and project specific requirements. Item B.6. required the Division to develop a Prescriptive Plan (Plan) which was to be included with the Final Project Report.

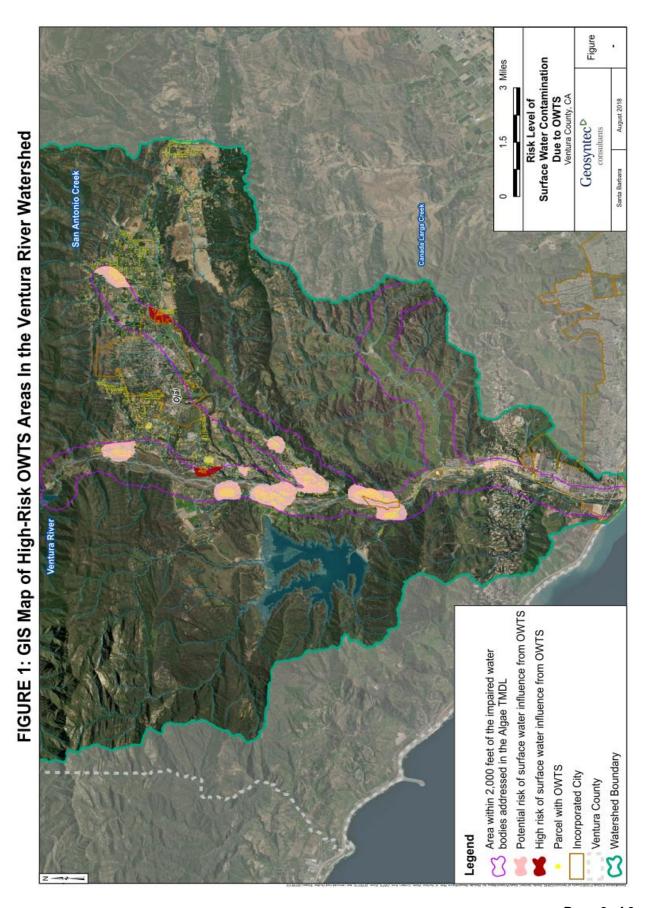
The purpose of the Plan is to identify areas which will be required to implement management measures to reduce pollution attributable to OWTS. Development of the Plan utilized current OWTS permitting criteria, historical geologic and water quality data, and the Technical Report and GIS Map of High-Risk OWTS Areas (GIS Map) developed during this study and made possible by this grant. The Plan describes different options and "paths forward" available to property owners, communities, and regulators, as well as evidence and supporting statements which reinforce how the implementation of the options will be effective in reducing OWTS-related nutrient loading as required in the Algae TMDL.

Stakeholders

There are a number of individuals and organizations who have a vested interest in the results of the Algae TMDL Study and any actions and/or decisions affecting the Ventura River Watershed (VRW) in order to reduce nutrient loading. These include property owners, local and State regulators, City and County elected officials, local water and sewer utilities, and non-profit organizations.

Several of these stakeholder entities are listed below, most of which participated as technical advisory committee (TAC) members for this study:

- Property owners in the affected area(s)
- Ventura County Environmental Health Division (Division)- responsible for issuing building permits for OWTS and responding to OWTS related complaints in unincorporated Ventura County.


- Ventura County Watershed Protection District (WPD)- provide for the protection of watercourses and watersheds in the County.
- Ventura County Board of Supervisors (BOS)- Elected five-person legislative body in Ventura County.
- Ventura County Resource Conservation District- Special district of the State which provides assistance to rural and urban communities to conserve, protect, and restore natural resources.
- California State Water Resources Control Board (State Board) and the Los Angeles Regional Water Quality Control Board (Regional Board)- have regulatory responsibility for protecting water quality throughout California.
- Cities of Ojai and Ventura- public works and building departments which have regulatory oversight for OWTS within their respective City limits, and/or obtain drinking water from surface waters or groundwater within the VRW.
- Ojai Valley Sanitation District (OVSD)- collects and processes wastewater from City of Ojai, the unincorporated Ojai Valley, and the north Ventura Avenue area.
- Ventura River Watershed Council- a stakeholder group for watershed planning in the VRW.
- Santa Barbara ChannelKeeper- non-profit organization whose mission is to protect and restore the Santa Barbara Channel and its watersheds.

Summary of the Algae TMDL Study

A project management team comprised of Division staff was selected and Geosyntec Consultants was contracted to develop the Algae TMDL Study work plans and reports. Groundwater and surface water sampling locations were selected and sampled on three separate occasions. Geosyntec evaluated the analytical data and presented the findings in a Technical Report and GIS Map delineating areas of OWTS in the VRW designated at high risk of contributing to nutrient loading (See Figure 1). The Algae TMDL Study segregated groundwater and surface water sampling locations in to groups identified by the letters A-G.

Because the correlation between nitrate and OWTS density was found to be the strongest using an upgradient area of influence for the sampled wells within 2,000 feet, an area of impact was established around the impaired waterbodies 2,000 feet in length on either side (Geosyntec, 2018). The determination of risk levels for surface water contamination to the impaired reaches from OWTS for the entire VRW are as follows:

• Low density OWTS (within 2,000 ft buffer of impaired reaches) or not within 2,000 ft buffer of impaired reaches = **Low risk** of surface water contamination.

 Medium and high density OWTS (within 2,000 ft buffer of impaired reaches) = high risk or potential risk of surface water contamination based on downgradient surface water nitrate levels observed in the study and historically.

The results of this study suggest OWTS in high risk areas are likely to influence TMDL-listed surface waters. During this study, the surface waters found to be elevated for nitrogen during dry weather were located downgradient of OWTS groups A and E, near the community of Mira Monte and east of Ojai, respectively. The table below illustrates the sampling data conclusions by Group:

Group	Groundwater	Groundwater - under influence of OWTS	Surface Water - high downgradient	Surface water - risk level of contamination from OWTS		
Group	- high nitrate	(PPCPs and isotopes)	average nitrate	This study ¹	Historical ²	
Α	✓	✓	✓	High	Low	
В	✓	✓	×	Low	Low	
С	✓	✓	×	Low	Low	
D	✓	✓	*	Low	Low	
Е	✓	✓	✓	High	High	
F	√	✓	×	Low	Low	
G	√	✓	Undetermined ³	Undetermined ³	Undetermined ³	

¹ Conclusion is based on surface water quality data collected during this study

On their own the final analytical results of the Algae TMDL Study do not provide sufficient evidence to exclude any potentially contributing OWTS areas. However, the data collected and analyzed in this study will be incorporated into other studies and will be used to create meaningful and appropriate policies and management strategies aimed at reducing nutrient contributions attributable to OWTS in the VRW.

Enforcement of the Ventura County OWTS Program

Ventura County Environmental Health Division Local Agency Management Program

On June 19, 2012, the State Water Resources Control Board's Siting, Design, Operation and Maintenance of Onsite Wastewater Treatment Systems Policy (OWTS Policy) became effective. The OWTS Policy established water quality protection requirements by adopting statewide minimum standards for OWTS. Under Section 3.1 and 3.2 of the OWTS Policy, Local agencies are provided the option to implement a Tier 2 Local Agency Management Program (LAMP) within their jurisdiction. The Ventura

² Conclusion is based on available historical surface water quality data

³This medium density area was distant from impaired surface waters. Further investigation is recommended to determine if downgradient surface waters could be impacted.

County LAMP was approved by the Regional Board on May 4, 2018 and was made effective by the Ventura County BOS on August 7, 2018.

The Division administers the LAMP which provides guidelines for OWTS site suitability analyses, OWTS design review, OWTS installation, permitting and inspections, and OWTS recordkeeping functions. The LAMP also addresses failing OWTS and illicit discharge complaints. In the event of a sewage release resulting from OWTS failure, the owner of the OWTS is issued a Notice of Violation by the Division to discontinue the unauthorized sewage release, and repair or replace the failed OWTS system. Any OWTS repair or replacement must be conducted in conformance with the applicable VCBC requirements. If public sewer is available as determined pursuant to VCBC requirements, the owner will be required to abandon the OWTS and connect to the public sewer utility.

Requirements in the Ventura County LAMP only cover unincorporated portions of Ventura County and only OWTS with a projected flow of less than 5,000-gallons per day and only receive domestic waste. The Division does not have the jurisdictional authority to review and approve, or authorize discharges from, OWTS within incorporated cities, including areas of the VRW. Properties located within the City of Ventura and the City of Ojai are subject to permitting requirements dictated by their local building authorities. Likewise, mobile home parks are regulated by the California Department of Housing and Community Development. Discharges from OWTS not regulated by the Division are authorized by the Regional Board through the issuance of waste discharge requirements (WDR).

Connection to Sewer Utility

Per Ventura County Building Code (VCBC), section 713.4 if a property is located with 200-feet of an available sewer line, that property is not eligible to obtain a permit to install an OWTS on the property. Likewise, if soil and other geologic conditions require an alternate OWTS be installed, the property owner is required to connect to sewer if it is available within one-half mile of the property. These requirements are currently enforced for new and replacement systems. So, regardless of low, potential, or high-risk areas as identified in the Algae TMDL Study, if a proposed new or replacement OWTS is within 200 feet of existing sewer (or one-half mile if an alternate OWTS is required), connection to sewer will be required.

Based on the GIS Map developed as a results of the Algae TMDL Study, sanitary sewer service provided by Ojai Valley Sanitary District (OVSD) is available very near most of the high-risk and potential risk areas. Upon failure or expansion, they will likely not be

allowed to repair or enlarge their existing OWTS, but rather be required to connect to the available sewer per VCBC requirements.

Supplemental Treatment for Nitrate and Pathogen Removal

Certain geologic, hydrologic, and/or soil conditions require the installation of an alternate designed OWTS, such as a mound system, subsurface sand filtration system, or supplemental / advanced treatment unit (ATU) to remove nitrogen or pathogens. Regardless of low, potential and high risk, if the soils/geological report states the property cannot accommodate a conventional OWTS, the installation of an alternate designed OWTS with an ATU will be required to conform to VCBC. Historical geologic data suggests bedrock in areas south of the Ventura River and the San Antonio Creek confluence, near sample groups C and D of the Algae TMDL Study. It is very likely OWTS installed in these areas will be required to have ATUs installed in order to meet nutrient load reductions. The VCBC will need to be amended to require an ATU for properties within unincorporated Ventura County whose soils reports to not specifically dictate the need for an ATU. Nitrate reduction technologies are required to be NSF/ANSI Standard 245 certified to meet a 50-percent reduction in total nitrogen, and must be installed by contractor with a valid C-42 license from the California State License Board.

Siete Robles Tract Limitations

The Siete Robles tract is located in the Ojai Valley, East of the City of Ojai and South of Ojai Avenue (Highway 150). Elevated groundwater conditions have reduced the ability of soil to receive and treat the sewage discharges from OWTS in the Siete Robles tract. An advisory notice has been issued by the Division for this tract prohibiting new conventional OWTS installation due to poor soil conditions, high groundwater and high potential of flooding during heavy rain events. Residents are allowed to continue using their existing, fully operable OWTS and obtain repair permits, but are prohibited from installing new OWTS, increasing the amount of wastewater discharge, and/or increase OWTS capacity (addition of plumbing fixtures and/or bedroom equivalents).

Possible Future Actions

Connection to Public Sewer

Ideally, the areas contributing nutrients from OWTS to surface water within the VRW would be provided sanitary sewer services via connection to the OVSD. This would reduce the OWTS-related nutrient contribution from these properties to zero. The Division does not have the regulatory authority to require property owners to connect to

sanitary sewer beyond what is currently written in VCBC. There are currently no requirements to compel or require property owners whose existing OWTS is both fully functioning and who are not seeking to modify their existing property, to connect to OVSD. Additionally, the Division cannot compel OVSD to connect properties which are outside their established service area.

One possibility is for the State Board or the Regional Board to pass a resolution prohibiting OWTS in areas identified as high-risk of contributing to nutrient loading in the VRW. Various Regional Boards have passed similar resolutions for a "phasing out" of OWTS in areas which do not meet water quality objectives specified in their respective Water Quality Control Plans (Basin Plan). Los Angeles Regional Board passed Resolution No. 99-13, the Oxnard Forebay Septic System Prohibition in 1999, which required all OWTS in the Oxnard Forebay of Ventura County to cease discharging by 2008. The area is now served by a sanitary sewer. The Santa Ana Regional Board passed Resolution No. R8-2006-0024 which amended their Basin Plan to include a prohibition on the use of OWTS in the Quail Valley Area of Riverside County. That resolution also included a phased and gradual connection to sanitary sewer service.

At this time, the cost for a single service connection to OVSD is approximately \$18,000.00. Due to the cost and labor-intensive activities required to connect to OVSD, including the connection fees and the cost of labor and equipment, the best method would be to plan a sanitary sewer connection project which will result in numerous properties being connected at the same time. This type of project will require targeted and efforts by State, County and City officials, as well as support from residents and local community leaders.

Requirement to Upgrade OWTS

Another option for reducing nutrient loading attributed to OWTS in the VRW is the installation or nitrate-reduction technologies, or ATUs, on new and existing OWTS. The Division does not have the regulatory authority to require property owners to install ATU's on their new or existing systems beyond what is currently written in VCBC. There are currently no requirements to compel or require property owners whose existing OWTS is both fully functioning and who are not seeking to modify their existing property, to install ATUs on their existing systems.

A Ventura County BOS resolution and/or amendment to the VCBC may be required to impose an ordinance which would require property owners in areas identified as contributing to nutrient loading in the VRW to install an ATU on their existing OWTS by a certain deadline. The cost of upgrading an existing OWTS is estimated to be between

\$15,000-\$50,000 depending on specific site and OWTS conditions, plus additional annual costs related to ongoing maintenance, service contracts, and effluent monitoring.

Moving Forward

Local property owners, City and County staff and elected officials, and State and Regional Board staff will work together to develop implementation methods to address nutrient loading from OWTS in the Ventura River Watershed. The development of a strategic and integrated approach will help to meet the goal of 50% reduction in loading from OWTS, without causing undue financial hardship to property owners.

The Algae TMDL Study is a first step in identifying nutrient contributions from OWTS in the VRW. Subsequent work is anticipated to build upon the findings from this study. At this time, all areas in the VRW are considered dischargers of nutrients as defined in the Algae TMDL and are subject to the required 50% load reduction. Future studies and additional information may support a TMDL revision, however, the Algae TMDL Study results alone did not supply sufficient information for the Regional Board to revise numeric targets and nitrate load allocations for OWTS. The Division will work with and support the Regional Board during any consideration to modify and/or refine the Algae TMDL in the future as more information becomes available.

The State Board is developing a surface water-groundwater nutrient transport model for the VRW. Once this model has been developed and approved, the Division will work with stakeholders to determine how best to utilize this new tool to address nutrient loading attributable to OWTS in the watershed.

The Division will network with stakeholders, in both the regulatory arena and in the affected community, to help develop a solution to address OWTS-related nutrient loading in the VRW. The results and any guidance information will be provided to the public on the Division's website. Public meetings and/or workshops will be scheduled to gain input from the community during the development of any implementation plan(s). Implementation of any load reduction strategies will initially be targeted in areas identified in the Algae TMDL Study Technical Report as high and potential risk. The Division will provide support to the State and Regional Board during the plan development and decision-making processes.

References

- California State Water Resources Control Board (State Board), 2012. OWTS Policy: Water Quality Control Policy for Siting, Design, Operation, and Maintenance of Onsite Wastewater Treatment Systems. June 2012.
- Geosyntec Consultants, 2018. Technical Report for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. November 2018.
- Los Angeles Region Water Quality Control Board (Regional Board), 2012. *Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries*. December 2012.
- Ventura County Building and Safety Division, 2016. *Ventura County 2016 Building Code (VCBC), Ordinance Number 4496.* 2016 Edition. Effective date January 1, 2017.
- Ventura County Environmental Health Division, 2018. Ventura County Environmental Health Division Local Agency Management Program for Onsite Wastewater Treatment Systems (LAMP). Effective date August 7, 2018.

Appendix 3-1: Complete November 2018 Technical Report - FINAL

Prepared for

County of Ventura – Environmental Health Division

800 S. Victoria Avenue Ventura, California 93009-1730

Technical Report

for the Study of Water Quality Impairments
Attributable to
Onsite Wastewater Treatment Systems (OWTS) in the
Ventura River Watershed

Prepared by

engineers | scientists | innovators

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101

Project Number LA0391

November 2018

TABLE OF CONTENTS

\mathbf{E}	xecutiv	ve Summary	V
1	Intr	roduction	1
	1.1	Project Setting	1
	1.2	Study Objectives	10
	1.3	Stakeholder Involvement	11
	1.4	Organization	12
2	San	mpling Activities	12
	2.1	Sampling Locations	13
	2.1.	.1 Groundwater Sampling Locations	13
	2.1.	.2 Surface Water Sampling Locations	20
	2.2	Field Procedures	23
	2.3	Sampling Schedule	23
	2.4	Sampling Parameters	24
	2.5	Potential Impacts from the Thomas Fire	25
	2.6	Lab Analyses	
	2.7	Summary of Sampling Data Collected	30
3	San	mpling Data Evaluation	32
	3.1	Nutrient Sampling Results	32
	3.2	PPCP Sampling Results	37
	3.3	Nitrate Isotopes Sampling Results	
4	Ide	entification of High Risk Areas	44
	4.1	Approach for Development of Risk Map	44
	4.2	Discussion of Sampling Data	
	4.2.	- · · <u>r</u>	
	4.2.	.2 Group B	48
	4.2.	1	
	4.2.	1	
	4.2.	1	
	4.2.	1 ' '	
	4.2.	7.7 Group G (Bedrock)	50
	4.2.	Summary of Observations	51
	4.2.		
	4.3	Areas of Potential OWTS Influence	
	4.4	Comparison to Historical Water Quality Monitoring Data	
	4.5	Uncertainties	63
5	Ref	ferences.	66

LIST OF TABLES

Table 1. Impairments Addressed by the Algae TMDL (LARWQCB, 2012)	8
Table 2. Study Stakeholder Involvement	12
Table 3. Groundwater Sampling Wells	15
Table 4. OWTS Density Upgradient of Sampled Groundwater Wells	18
Table 5. Surface Water Sampling Locations	21
Table 6. Sampling Event Schedule	23
Table 7. Sampling Parameters	24
Table 8. Summary of Post-Thomas Fire Impacts	26
Table 9. Laboratory Analyses	30
Table 10. Sampling Event Summary for Groundwater Wells	31
Table 11. Sample Event Summary for Surface Water	32
Table 12. Average Nitrogen Concentrations in Groundwater from Study	34
Table 13. Average Nitrogen Concentrations in Surface Water from Study	35
Table 14. PPCP Detections in Groundwater	37
Table 15. Nitrate Isotopes Summary in Groundwater	40
Table 16. Nitrate Isotopes Summary in Surface Water	42
Table 17. Nitrate Isotopes Summary in Groundwater by Geology	43
Table 18. Summary of Sampling Data Conclusions by Group	51
Table 19. OWTS Count and Density Corresponding to Density Designations	55
LIST OF FIGURES	
Figure 1 Venture Diver Wetershed Overview	2
Figure 1. Ventura River Watershed Overview	
Figure 2. Ventura River Watershed Groundwater Basins	
Figure 3. Ventura River Watershed Geology	
Figure 4. Ventura River Watershed Approximate Upwelling Reaches	
Figure 5. Water Bodies Addressed by the Algae TMDL	
Figure 7. Groundwater Sampling Locations	
Figure 8. Upgradient OWTS Density of Sampled Wells and Density Designations	
Figure 9. Surface Water Sampling Locations	
Figure 10. Thomas Fire Perimeter	
Figure 11. Thomas Fire Impacts – Meiners Oaks Major Outfall Drainage Area (VCWPI	
Eigen 12 The rest Eige Learner Ois Maior Outful Designs Area (MOWDD 2010b)	
Figure 12. Thomas Fire Impacts – Ojai Major Outfall Drainage Area (VCWPD, 2018b).	
Figure 13. Thomas Fire Impacts – Mass Emissions VR2 Drainage Area (VCWPD, 2018	
Figure 14. Average Nitrate Concentrations in Groundwater and Surface Water	36

Figure 15. PPCP Detections in Groundwater
Figure 16. Example Plot of d ¹⁸ O and d ¹⁵ N
Figure 17. Nitrate Isotopes Summary in Groundwater (by Group)
Figure 18. Nitrate Isotopes Summary in Groundwater and Surface Water (by Group)
Figure 19. Nitrate Isotopes Summary in Groundwater (by Geology)
Figure 20. Summary of Nitrate and PPCP Sampling Data
Figure 21. Correlation for Different Sizes of Upgradient Influence Areas (for nitrate in
groundwater and count of OWTS)
Figure 22. Nitrate vs. Number of OWTS Located in the Upgradient Groundwater Influence Area
(within 2,000 ft radius) for Each Groundwater Sample
Figure 23. Boxplots of Nitrate by number of OWTS Located in the Upgradient Area of
Groundwater Influence (with 2,000 ft radius)
Figure 24. Risk Map: Geographic Areas where OWTS Contamination of Groundwater is Likely
Contributing to Impairment of Surface Waters
Figure 25. Historical Groundwater Quality in the VRW
Figure 26. Historical Surface Water Quality in the VRW (Dry Weather Only)

APPENDICES

Appendix A: Sampling Results

Appendix B: Field Forms and Photos

Appendix C: Laboratory Reports and COCs

EXECUTIVE SUMMARY

Many parcels in the Ventura River Watershed (VRW) are connected to a sanitary sewer system, but a portion of the watershed, primarily unincorporated areas, is not serviced by these sanitary sewer systems and instead utilize onsite wastewater treatment systems (OWTS) for treatment of wastewater. The OWTS Policy (SWRCB, 2012) was established by the State Water Resources Control Board (SWRCB) and establishes a statewide, risk-based tiered approach for the regulation and management of OWTS installations and replacements. This policy was adopted as a result of Assembly Bill 885, which required the SWRCB to develop statewide standards for permitting and operation of OWTS. The intent was to allow continued use of OWTS while also protecting water quality and human health.

The purpose of this State 319(h) grant-funded study was to define the geographic extent of OWTS that are contributing significant nitrogen loads to the impaired reaches of the Ventura River and its tributaries. OWTS usually release treated wastewater effluent into unsaturated soil via a leach field, which disperses any remaining organic materials and other contaminants prior to reaching groundwater. The treated effluent from OWTS can be a potential source of pollution to groundwater and surface waters if systems are not sited, maintained, or functioning properly. The OWTS may also contribute nutrients such as nitrate even in properly functioning systems. Nitrates from OWTS can persist in the subsurface environment potentially causing elevated concentrations in shallow groundwater, which can then flow into surface waters and impact surface water quality.

This study investigated the influence of OWTS on nitrogen impairments in the VRW. The objectives of the study included: (1) collecting information regarding nitrogen levels in the watershed through sampling and analysis of both groundwater and instream surface water at selected locations, with a focus on locations near OWTS and TMDL-covered waterbodies to capture spatial variability in water quality; and (2) identifying geographic areas where OWTS are contributing nitrogen to surface waters.

Sampling and analysis for this study were conducted at numerous surface and groundwater locations using both low-cost analytical methods (to determine where nitrogen in groundwater may be impacting surface water) and advanced forensic tools (to identify nutrient sources). Samples were collected from surface waters upstream and downstream of upwelling stream reaches and from groundwater between upwelling reaches and OWTS, as well as other locations. Upwelling reaches (i.e., surface water reaches that are fed by rising groundwater) were conservatively defined in this study as all reaches with dry weather flow, during this study or in prior sampling or observational flow mapping efforts.

Samples were collected from 29 locations in the VRW (21 groundwater locations and eight surface water locations) during three sampling events from August 2017 to May 2018. Wells were sorted based on geologic classification (bedrock or alluvial) and categorized into alphabetical group

v

High

Low

Undetermined³

names (i.e. A, B, C, etc.) based on proximity to each other. All selected groundwater sampling groups have at least one associated downgradient surface water sampling location identified, although some groups are a considerable distance from the nearest upwelling stream reach. Samples were analyzed for nitrogen compounds, in addition to advanced forensic analytes including chemical sewage indicators and stable nitrate isotopes. The evaluation of sampling data by group is summarized in Table ES-1

Surface Water Surface water - risk level of **Groundwater - under** Groundwater - high contamination from OWTS Group influence of OWTS - high nitrate downgradient (PPCPs and isotopes) This study¹ Historical² average nitrate **√ √** Α High Low **√ √** В × Low Low \mathbf{C} **√** × Low Low **√** D Low × Low

√

×

Undetermined³

High

Low

Undetermined³

Table ES-1. Summary of Sampling Data Conclusions by Group

E

F

G

√

Based on the sampling data evaluation by group, the following study questions were addressed:

1) Are groundwater nitrogen levels elevated downgradient of OWTS areas? If yes, which OWTS areas?

Nitrate in groundwater was elevated downgradient of areas with OWTS throughout the VRW. The average nitrate concentrations for all groups, except group D (low density OWTS) and the very low OWTS density "background" wells, were above the TMDL allowable in-stream concentration. Group D had one of three wells above the target. The number of OWTS within a certain distance upgradient of each well was found to be significantly correlated with groundwater nitrate concentrations in alluvial areas. Nitrate was also found to be elevated where OWTS were in areas identified as bedrock geology.

2) Are these areas also impacted by sewage indicators that would further support OWTS as a source? If yes, which OWTS areas?

At least one pharmaceutical and personal care product (PPCP), which are used as chemical sewage indicators, was detected in groundwater downgradient of OWTS in each groundwater sampling group, with multiple PPCPs detected in some wells. Nitrate isotope ratios also

¹Conclusion is based on surface water quality data collected during this study

² Conclusion is based on available historical surface water quality data

³ This medium density area was distant from impaired surface waters. Further investigation is recommended to determine if downgradient surface waters could be impacted.

suggested that groundwater was influenced by animal waste and/or human sewage throughout the VRW. Therefore, both chemical (PPCP) and isotope data supports OWTS effluent as a source of nitrate to groundwater in the VRW.

3) Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations? If yes, downstream of which OWTS areas?

While OWTS influences to groundwater were evident throughout the watershed, the impacts to surface waters during dry weather were not as ubiquitous. At many locations on the TMDL-covered streams, average nitrate, both historically and in this study, were below the TMDL allowable in-stream concentration for TN. During this study, the surface waters found to be elevated for nitrogen during dry weather were located downgradient of OWTS Groups A and E, near the community of Mira Monte and east of Ojai, respectively.

Evaluation of the sampling data showed that levels of nitrate in groundwater increase with the density of upgradient OWTS. The correlation between nitrate and upgradient OWTS density was used to determine low, medium, and high upgradient OWTS density designations. Using the linear regression equation, the upper limit of the low density designation was set to correspond to a nitrate concentration of 1.15 mg/L, which represents the allowable dry weather concentration for total nitrogen that would meet Algae TMDL allowable in-stream concentrations for the receiving water, such that areas with low density OWTS would have average nitrate levels in groundwater less than the allowable in-stream concentration based on the data collected in this study.

The goal of this study was to define the geographic extent of OWTS that are contributing significant nitrogen loads to the TMDL-covered reaches of the Ventura River and its tributaries, and the highest risk of contribution to surface waters was found to be for OWTS in close proximity to these surface water reaches. The correlation between nitrate and OWTS density was found to be the strongest using a distance of upgradient influence for the sampled wells of 2,000 ft. Therefore, an area of impact around the impaired waterbodies of 2,000 feet on either side was used. This represents the area where OWTS have the potential to significantly contribute nitrate to surface water impairments based on the analysis conducted in this study. Within this distance, areas were further evaluated based on OWTS density and sampling results from this study to determine the risk of surface water contamination.

The relationship between nitrate concentration in groundwater and density of upgradient OWTS was used to extrapolate results to other unsampled areas of the VRW based on the density of OWTS, in both bedrock and alluvium geologic areas. Areas with low density upgradient OWTS were predicted to have a low risk of contribution to surface water impairments, since groundwater levels of nitrate are expected to be below the TMDL numeric limit on average. Areas with medium or high density OWTS (within the 2,000 ft buffer of impaired reaches) were examined further to determine risk level to surface water contamination. Surface water sample results (both from this study and historically) in close proximity and downgradient (such that groundwater quality would

likely influence surface waters in upwelling areas) were examined to determine if average surface water nitrate levels were above the TMDL numeric limit. If groundwater was identified as being likely influenced by OWTS (based on medium or high density upgradient OWTS) but available surface water data downstream did not suggest surface water impacts (i.e., low nitrate levels), the area was identified as "potential" risk for surface water impairment. However, if an area was identified as likely having influence from OWTS in groundwater (i.e., medium or high density OWTS), and downstream surface water sampling results showed elevated levels of nitrate, the area was identified as a having high risk of surface water contamination due to OWTS.

Based on the results of this study, there are enough data to support that OWTS in the low risk areas are not likely to significantly contribute nitrate to impaired surface waters. Similarly, the results of this study support that OWTS in high risk areas are likely to influence impaired water bodies addressed in the Algae TMDL. For the areas classified as potential risk, results suggest that groundwater is likely being influenced by OWTS (based on OWTS density) and has the potential to impact surface waters, but there is not evidence of surface water impacts (based on average surface water nitrate concentrations at downstream locations). Further investigation, such as through the ongoing groundwater-surface water interaction modeling project, is necessary to determine whether contributions in these areas are significantly contributing to exceedances of the TMDL allowable in-stream concentration for nitrogen in surface waters.

The surface water risk map for the VRW is illustrated in Figure ES-1. Out of an estimated 2,874 OWTS in the VRW, 43 are in the high risk area and 807 are in the potential risk area (30% of all OWTS in the VRW are classified as high or potential risk). Sources of uncertainty for the risk map are discussed in Section 4.5.

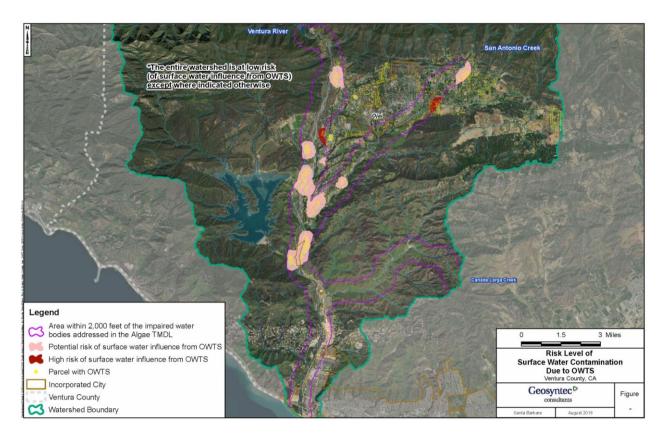


Figure ES-1. Risk Map: Geographic Areas where OWTS Contamination of Groundwater is Likely Contributing to Impairment of Surface Waters

1 INTRODUCTION

The County of Ventura Environmental Health Division (VCEHD), with assistance from Geosyntec Consultants, has prepared this technical report ("report") for the study of water quality impairments attributable to Onsite Wastewater Treatment Systems (OWTS) in the Ventura River Watershed (VRW). This report includes a summary of the monitoring conducted as part of the study and conclusions regarding the potential influence of OWTS on water quality impairments in the VRW.

Monitoring conducted for this study was based on the Monitoring Plan for the Study of Water Quality Impairments Attributable to OWTS in the VRW ("Monitoring Plan") (Geosyntec Consultants, 2017a), which outlined the monitoring objectives, constituents to be monitored, and the sampling locations and frequencies for the water quality monitoring activities, and the SWAMP-compliant Quality Assurance Project Plan (QAPP) (Geosyntec Consultants, 2017b), which detailed the quality assurance and quality control procedures for groundwater and surface water sample collection and analysis.

1.1 Project Setting

The VRW is predominantly located in Ventura County, California, with a small portion (2.8%) of the watershed in Santa Barbara County. The main tributaries of the 226 square mile watershed are Matilija Creek, North Fork Matilija Creek, San Antonio Creek, Cañada Larga Creek, and Coyote Creek, and the watershed discharges to the Pacific Ocean. The portion within Ventura County consists of the County of Ventura (49.1%), the United States Forest Service (47.7%), the City of Ojai (1.9%), and the City of Ventura (1.2%) (Walter, 2015). The majority of the watershed is undeveloped (approximately 87%), with the northern half of the watershed falling within the Los Padres National Forest. The southern half includes the cities of Ojai and Ventura and several unincorporated communities such as Oak View and Meiners Oaks. An overview of the VRW is shown in Figure 1.

1

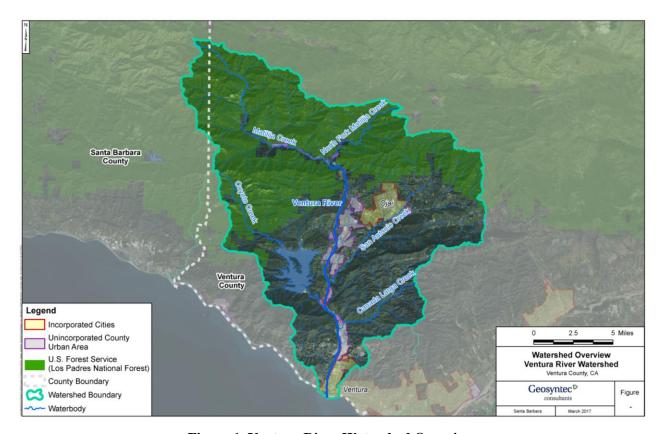


Figure 1. Ventura River Watershed Overview

Most of the watershed consists of mountains and foothills, with only 15 percent of the watershed considered flat (slope of 10% or less). After open space, agriculture is the predominant land use in the watershed. The primary agricultural uses in the watershed consist of citrus and avocado, irrigated crops, and cattle grazing.

The four major groundwater basins in the watershed, shown in Figure 2, include the Ojai Valley basin (10.1 square miles), Upper Ojai Valley basin (4.4 sq. mi.), Upper Ventura River basin (14.6 sq. mi.), and the Lower Ventura River basin (9.5 sq. mi). The Ojai Valley basin has the largest capacity of the four basins, and several municipal and agricultural water users rely heavily on this basin for supply. The Ojai Valley basin contributes regular annual flow to the San Antonio Creek. The basin has unconfined conditions in the northern and eastern portions and mostly confined to semi-confined in the remaining central, southern, and western portions (depending on the volume of water in storage and groundwater level) (Walter, 2015). Depth to groundwater is usually less than 50 feet in the southern and western portions, while the eastern and northern areas may have depths to groundwater up to 300 feet (Walter, 2015).

Although the Upper Ojai Valley basin has the smallest storage capacity of the four basins, it serves as an important source of water for residents in Upper Ojai and some agricultural users. The basin is a bowl-shaped, unconfined basin filled predominately with alluvial fan deposits from erosions

of the surrounding mountains. Depth to groundwater in this basin typically ranges from 45 to 60 feet below ground surface. The Upper Ojai Valley basin is currently managed by the Ojai Basin Groundwater Management Agency (OBGMA), who have authority to manage the supply and demand of the groundwater resources.

The Upper Ventura River basin is located under and adjacent to the Ventura River and flows from the Matilija Creek and North Fork Matilija Creek junction downgradient toward Foster Park. Although this basin is not the largest of the four basins, it supplies the greatest volume of groundwater in the watershed. The Upper Ventura River basin is unconfined and shallower than the Ojai Valley basins. The basin is unconfined and has a direct relationship with surface water in the Ventura River. Much of the surface water in the river overlying this basin can become dry in low to moderate rainfall years. The subsurface diversion structure at Foster Park serves as the border between the Upper and Lower Ventura River basins (Walter, 2015).

The Lower Ventura River basin also lies under the Ventura River, starting from Foster Park and extending to the coast. This basin supplies the smallest water supply of the four basins and is used minimally for industrial and/or agricultural needs. The basin is unconfined and the depth to groundwater in the floodplain areas is typically between three and 13 feet (depth to groundwater becomes deeper towards the edges of the basin) (Walter, 2015).

The usable aquifers in the VRW are unconfined, with the exception of the Ojai Valley basin, which has areas of confined, semi-confined, and unconfined groundwater (Walter, 2015).

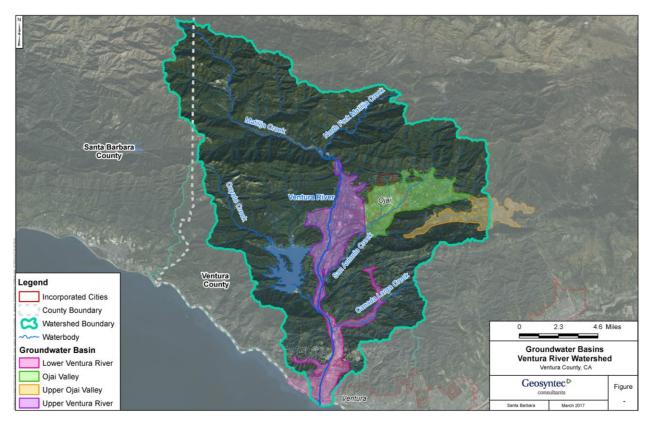


Figure 2. Ventura River Watershed Groundwater Basins

The mountains consist of primarily tertiary (3 to 70 million years old) sedimentary rocks such as sandstones, siltstones, and shales. The valley area consists of unconsolidated quaternary alluvial deposits. These unconsolidated alluvial deposits consist of silt, sand, gravel, cobbles, and boulders, and constitute the major groundwater aquifers. The major geologic features of the VRW are shown in Figure 3. The sandstone and mudstone areas are collectively referred to as "bedrock" areas. Bedrock is shown to exist surrounding the Ventura River just downstream of the confluence with San Antonio Creek. However, information regarding the alluvium thickness from DBS&A (2018) confirms that shallow alluvium is actually present in this area.

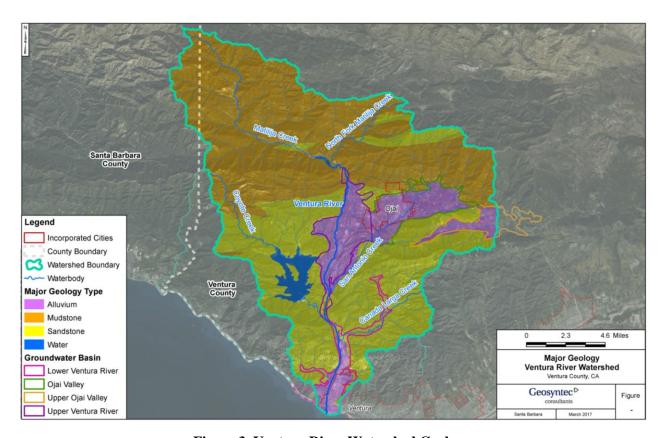


Figure 3. Ventura River Watershed Geology

In portions of the Ventura River, upwelling conditions are observed, meaning groundwater seeps into the river waterbody. These groundwater spill points to surface water are important to consider in the VRW. The upwelling portions of the Ventura River shown in the Monitoring Plan reflect information from the *Ventura River Watershed Protection Plan Report* (Cardno Entrix, 2012). Based on past reports and USGS streamflow data, portions of San Antonio Creek are upwelling, but it is unclear exactly which portions these are. The *Ventura River Watershed Management Plan* (Walter, 2015) reported that upwelling reaches are present in the lower elevations of the basin (below the confluence of Thacher Creek and San Antonio Creek). Model-simulated results vary widely but generally show upwelling areas in the lower basin areas that are maintained even at minor levels during dry periods. Flow mapping (wettedness) data received from California Department of Fish and Wildlife (CDFW) shows that there were flowing (wet) and dry areas along San Antonio Creek during the driest periods in 2015 and 2016, but that these areas can change from year to year.

Groundwater levels were expected to be higher in 2017 after the previous wet winter, potentially resulting in more upwelling areas and flow in streams throughout the VRW. The 2017/2018 rainy season was fairly dry, which could have resulted in lower groundwater levels and less upwelling areas in 2018. Surface water sampling conducted during this study (to be described further in Section 2.1.2) and historically from various sources (sources outlined in the Monitoring Plan and

historical data summarized in Section 4.4) was used to define upwelling areas. Sampling for this study, in addition to the historical surface water sampling that was evaluated, was conducted in dry weather, so the maximum upstream extent of upwelling area was defined based on the most upstream locations where surface water sampling has occurred and is shown in Figure 4.

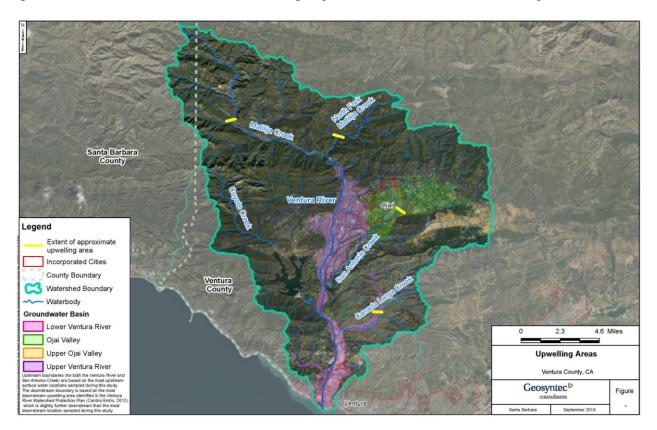


Figure 4. Ventura River Watershed Approximate Upwelling Reaches

It was not possible to conduct detailed investigation of groundwater and surface water interactions. However, several sources provide reference to useful information regarding groundwater movement to surface water, including: Kear, 2005 (Figure 5-7, Ojai basin); Schnaar, 2011 (Ojai basin); SWRCB, 2016 (Upper Ventura River basin and Ojai Valley basin); and Kear, 2016 (Ojai Valley basin). The hydraulic gradient of groundwater generally follows the land topography (Kear, 2005), which was used to determine the approximate direction of groundwater flow for sampling planning throughout the VRW. As previously mentioned, the groundwater basins in the VRW represent primarily unconfined aquifers, except for the Ojai Valley basin, which has some unconfined portions in the northern and eastern parts of the basin and semi-confined or confined areas in the remainder of the basin. The referenced reports include several cross sections throughout the Ojai Valley basin showing undifferentiated alluvium and bedrock and layers of aquitard material located in between aquifer layers. These cross sections provide information on the areas that are confined, in addition to the transitions to semi-confined and unconfined areas.

Geosyntec consultants

Water quality in the VRW is generally good, as only a small portion of the watershed is developed. However, the Ventura River reaches 1 and 2 and the estuary are on the Clean Water Act's Section 303(d) list of impaired waterbodies for algae and eutrophic conditions¹. San Antonio Creek, Ventura River reaches 1 and 2, Cañada Larga, and the estuary are identified on the 303(d) list for low dissolved oxygen (DO), high nitrogen, and eutrophic conditions. The most serious algae problems, in terms of the intensity of algae blooms, occur early in the dry season, following a wet season with high rainfall and large storm events. Because of the excessive algae growth and problems caused by high nutrient levels, the Algae, Eutrophic Conditions, and Nutrients TMDL for the Ventura River and its Tributaries (Algae TMDL) was established. The Algae TMDL was adopted by the Los Angeles Region Water Quality Control Board (Regional Board) in December 2012 and became effective in June 2013. Nitrogen and phosphorus are the primary concern with excessive algae. Existing groundwater and surface water data (nitrate as N) was analyzed as part of this study. These data are shown spatially in Appendix B of the Monitoring Plan and were also updated to include recent available data, as shown in Section 4.4 herein. Figure 5 shows the waterbodies that are addressed in the Algae TMDL.

¹ In addition, Matilija Creek Reach 2 (above reservoir), Matilija Creek Reach 1 (junction with North Fork to reservoir), and Matilija Reservoir are listed for fish barriers (fish passage). San Antonio Creek (tributary to Ventura River Reach 4) is listed for indicator bacteria, nitrogen, and total dissolved solids (TDS). Casitas Lake is listed for mercury. Ventura River Reach 1 (Main Street to Estuary) is listed for benthic community effects. Ventura River Reach 3 (Weldon Canyon to confluence with Coyote Creek) is listed for indicator bacteria and toxicity. Cañada Larga is listed for fecal coliform and TDS (in addition to low dissolved oxygen). The Ventura River estuary is listed for trash and total coliform (in addition to algae and eutrophic conditions). Various shoreline beaches are listed for indicator bacteria.

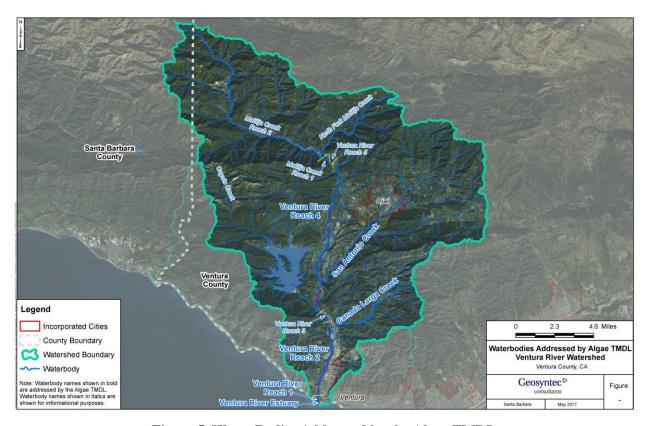


Figure 5. Water Bodies Addressed by the Algae TMDL

Table 1 shows the water bodies and specific impairments identified in the Algae TMDL (LARWQCB, 2012).

Table 1. Impairments Addressed by the Algae TMDL (LARWQCB, 2012)

Waterbody	303(d) Listed Impairments	Additional Impairments	
Ventura River Estuary	Algae, Eutrophic Conditions	Low DO	
Ventura River Reach 1	Algae, Eutrophic Conditions	Low DO	
Ventura River Reach 2	Algae, Eutrophic Conditions	Low DO	
Cañada Larga	Low DO	1	
Ventura River Reach 3	-	Low DO	
Ventura River Reach 4	-	Low DO	
San Antonio Creek	Nitrogen	Low DO	

While multiple sources are identified in the Algae TMDL and there is a high amount of uncertainty in the estimates of sources of nitrogen, the Algae TMDL estimated that 4.7 percent of the total nitrogen contribution was from septic systems (LARWQCB, 2012). The Algae TMDL includes requirements for a 50 percent load reduction for total nitrogen from OWTS for both dry and wet weather. No load reductions for phosphorous were allocated to OWTS. The Algae TMDL

recognizes that not all OWTS may be contributing to the impairment and allows for a special study to be conducted investigating the influence of OWTS on surface water quality. The overall goal of this study is to determine the geographic area where OWTS are contributing to the algae impairment, allowing for total nitrogen load reductions to be targeted to OWTS that are impacting surface water quality. A complementary study funded by the State Water Resources Control Board (SWRCB) and Los Angeles Region Water Quality Control Board (LARWQCB), is ongoing and will result in the development of a groundwater-surface water model of the VRW to evaluate dry weather instream flow quantity and quality (nitrogen specifically), and therefore will use results from this OWTS study to improve on previous estimates of septic contributions to the VRW nitrogen mass balance

Most parcels in the watershed are connected to a sanitary sewer system operated by either the Ojai Valley Sanitary District (City of Ojai and some surrounding areas) or the Ventura Water Reclamation Facility (City of Ventura), which treat sewage at centralized wastewater treatment facilities. However, a portion of the watershed, primarily unincorporated areas, is not serviced by these sanitary sewer systems and thus utilize OWTS for treatment of waste. Based on information provided by the Ventura County Watershed Protection District (VCWPD), it is estimated that there are 2,874 parcels with OWTS, primarily septic systems, within the Ventura River watershed, as shown in Figure 6. These parcels were determined based on OWTS applications/permits to the VCEHD (as of July 2015) and this estimate is slightly larger than the 2,131 parcels identified in the Algae TMDL (LWA, 2015)².

The OWTS Policy (SWRCB, 2012) was established by the State Water Resources Control Board (SWRCB) and became effective in May 2013. The OWTS Policy establishes a statewide, risk-based tiered approach for the regulation and management of OWTS installations and replacements. This policy was adopted as a result of Assembly Bill 885 (amendment to California Water Code section 13290), which required the SWRCB to develop statewide standards for permitting and operation of OWTS. The intent was to allow continued use of OWTS while also protecting water quality and human health.

The buffer surrounding the TMDL-covered reaches, as shown in Figure 6, represents a 600-foot distance extending from the stream centerline³. This buffer area was provided by VCEHD and is shown as a reference to the approximate area that would be required for advanced treatment by the Statewide OWTS Policy if no TMDL was in place for this watershed. However, the load reductions for OWTS in the Algae TMDL apply to the entire watershed, and it is through this study that the

² The estimate cited in the Algae TMDL identified parcels with structures having private or public restrooms where there were no sewer lines. The total number of septic systems was then determined by subtracting the parcels where sewer services are available from all parcels.

³ This differs from the OWTS policy and may be reevaluated to extend from the natural or levied bank for TMDL-covered reaches, per the OWTS policy.

contributing area of OWTS required for advanced treatment or connection to a sanitary sewer system may be modified.

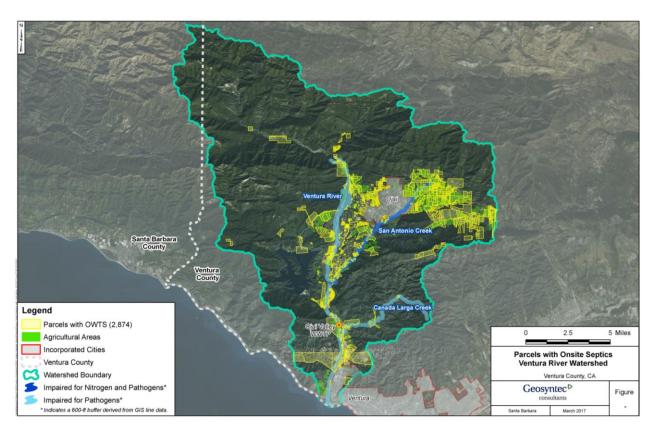


Figure 6. OWTS Parcels in the VRW

1.2 Study Objectives

The purpose of the State 319(h) grant-funded study was to define the geographic extent of OWTS that are contributing significant nitrogen loads to the TMDL-covered reaches of the Ventura River and its tributaries. OWTS usually release treated wastewater effluent into unsaturated soil via a leach field, which disperses any remaining organic materials and other contaminants prior to reaching groundwater. The treated effluent from OWTS can be a potential source of pollution to groundwater and surface waters if systems are not sited, maintained, or functioning properly. The OWTS may also contribute nutrients such as nitrate even in properly functioning systems. Nitrates from OWTS can persist in the subsurface environment potentially causing elevated concentrations in shallow groundwater, which can then flow into surface waters and impact surface water quality.

This study investigated the influence of OWTS on nitrogen impairments in the VRW. The objectives of the study included: (1) collecting information regarding nitrogen levels in the watershed through sampling and analysis of both groundwater and instream surface water at selected locations, with a focus on locations near OWTS and TMDL-covered waterbodies to capture spatial variability in water quality; and (2) identifying geographic areas where OWTS are

contributing nitrogen to surface waters. The sampling and analysis performed for this study achieved objective 1 and the collected data was analyzed, as summarized in this report, to complete objective 2. The study questions addressed through this water quality monitoring included:

- 1. Are groundwater nitrogen levels elevated downgradient of OWTS areas? If yes, which OWTS areas?
- 2. Are these areas also impacted by sewage indicators that would further support OWTS as a source? If yes, which OWTS areas?
- 3. Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations? If yes, downstream of which OWTS areas?

1.3 Stakeholder Involvement

The LARWQCB provided input and approved the Monitoring Plan and QAPP, and the Technical Advisory Committee (TAC) also provided input throughout the planning and implementation phases of the study. Table 2 includes personnel and stakeholders involved in the Study. Several meetings have occurred throughout the study, as shown below.

- Kickoff meeting with VCEHD (September 27, 2016): outlined the project objectives, desired outcomes, sampling and analysis approach, stakeholder outreach, and project schedule.
- TAC Meeting (November 22, 2016): overview of VRW impairments and existing OWTS regulation, objectives and approach for the study, current project status, and schedule.
- TAC Meeting (June 13, 2017): outlined the selection of sampling locations and the schedule.

Table 2. Study Stakeholder Involvement

Name	Organization	Role
William Stratton	VCEHD	County Project Director
Charles Genkel	VCEHD	County Project Manager
Brandon Steets, P.E.	Geosyntec	Project Director
Jared Ervin, Ph.D.	Geosyntec	Project Manager
Shana Rapoport	LARWQCB	State Grant Manager
Renee Spears	SWRCB	State QA Program Manager
Ewelina Mutkowska	Ventura County PWA, Stormwater	TAC Member
Steve Offerman	Office of Ventura County Supervisor	TAC Member
Zoe Carlson	Ventura County Watershed Council	TAC Member
Ben Pitterle	Santa Barbara Channelkeeper	TAC Member
Jennifer Tribo	City of Ventura	TAC Member
Jeff Palmer	Ojai Valley Sanitation District	TAC Member
Jenny Newman	LARWQCB	TAC Member
Kevin Delano	SWRCB	TAC Member
Alma Quezada	Ventura County PWA, Groundwater	TAC Member
Greg Grant	City of Ojai Public Works	TAC Member
Lexi Everhart	Ventura County Resource Conservation District	TAC Member
Charles Genkel	Ventura County EHD	TAC Member

1.4 Organization

Section 2 describes the sampling performed for this study, including the sampling strategy, locations, schedule, and parameters. Section 2 also includes a brief discussion on the potential impacts of the Thomas Fire on the study. Section 3 summarizes the sampling data collected for this study, including nutrients, pharmaceutical and personal care products as sewage indicators, and nitrate isotopes. Section 4 presents the geographic areas where OWTS have a high risk of contributing nitrogen to surface waters, including an overview of the approach to develop the OWTS contribution risk map and a detailed discussion of the sampling results. Section 4 also includes a comparison of sampling data from the study to historical water quality data and a discussion of uncertainties associated with the risk map.

2 SAMPLING ACTIVITIES

Sampling and analysis for this study were conducted at numerous surface and groundwater locations using both low-cost analytical methods (to determine where nitrogen in groundwater may be impacting surface water) and advanced forensic tools (to identify nutrient sources). Samples were collected from surface waters upstream and downstream of upwelling stream

reaches and from groundwater between upwelling reaches and OWTS. Samples were collected from 29 locations in the VRW (21 groundwater locations and eight surface water locations) during three sampling events from August 2017 to May 2018. Samples were analyzed for nitrogen compounds, in addition to advanced forensic tools including chemical sewage indicators and stable nitrate isotopes.

2.1 Sampling Locations

2.1.1 Groundwater Sampling Locations

During development of the Monitoring Plan, 24 existing groundwater monitoring wells were selected as monitoring locations (21 primary wells and 3 background wells). Additional wells were selected as backup wells in case of access or other issues. Refer to section 3.2.1 of the Monitoring Plan for a detailed description of the methodology used to select groundwater sampling locations, which utilized Geographic Information Systems (GIS) software and available datasets such as geology. In general, wells were selected close to upwelling reaches because the concentration of nitrate there is as close as possible to what is being discharged into the stream. Nitrate measured in wells further away from streams would undergo transformation and dilution before reaching the stream. Wells were also selected in differing geology (i.e., alluvium and bedrock), even though areas near upwelling reaches (known at the time of Monitoring Plan development based on available information) in bedrock geology could not be identified, because movement of groundwater is expected to vary based on geology. Groundwater is expected to move slowly (unless fractures allow preferential flow paths providing more rapid transport) and have more heterogeneous and unpredictable flow paths in bedrock compared to alluvial areas. Wells were sorted based on geologic classification (bedrock or alluvial) and categorized into alphabetical group names (i.e. A, B, C, etc.) based on proximity to each other.

Background monitoring wells, located near primary wells selected for sampling but upgradient of most nearby OWTS, were also selected for sampling. The background groundwater sampling locations were intended to have little to no upgradient sources nearby, to quantify water quality that is not impacted by potential sources, but it should be noted that low density OWTS, sanitary sewers, and/or agricultural areas may still be present further upgradient.

During the first sampling/reconnaissance event, the selected groundwater sampling wells were examined for feasibility of collecting samples, which included accessibility to wells, access/availability of groundwater in the wells, safety considerations, etc. Some wells selected in

the Monitoring Plan were not feasible⁴, so previously identified backup wells were instead used⁵. The primary and background wells used for sampling are listed in Table 3 and shown in Figure 7. Additional data for these wells, including all wells identified as backup, are included in Appendix C of the Monitoring Plan.

.

⁴ This includes GW-B-01, GW-B-02, GW-C-01, GW-C-02, GW-C-03, GW-D-01, GW-D-02, GW-D-03, GW-E-01, GW-F-01, GW-G-03, GW-A-BK-05, and GW-B-BK-04.

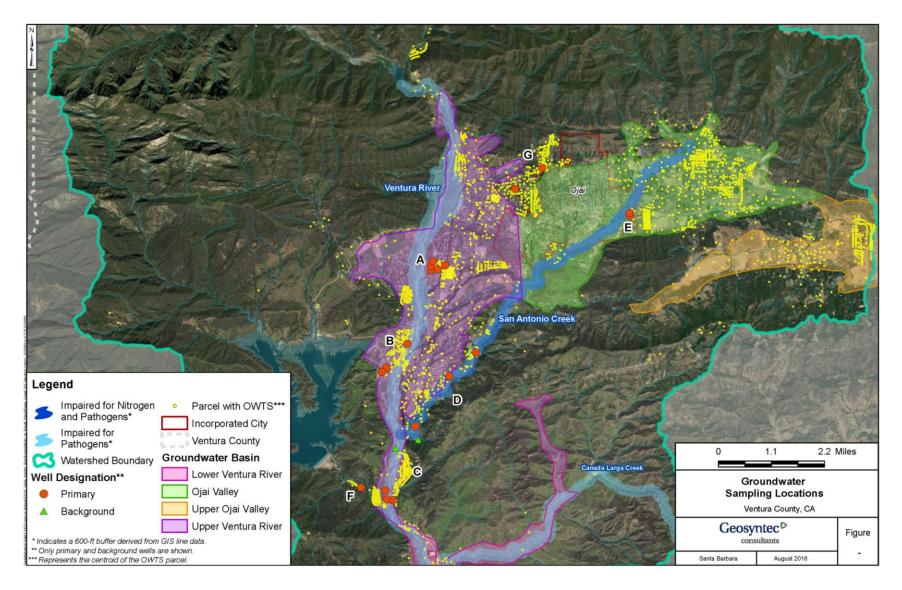

⁵ Specifically, GW-A-07, GW-B-04, GW-B-05, GW-C-07, GW-C-08, GW-D-04, GW-D-05, GW-D-07, GW-F-02, and GW-C-BK-06.

Table 3. Groundwater Sampling Wells

Location ID	Group	Designation	State Well Number	Latitude	Longitude	Owner	Groundwater Basin	Area Geology
GW-A-01	A	Primary	04N23W16C09S	34.42933	-119.29386	Private	Ventura River-upper	Alluvium
GW-A-02	A	Primary	04N23W16C10S	34.43021	-119.29633	Ventura River Water Dist	Ventura River-upper	Alluvium
GW-A-03	A	Primary	04N23W16F04S	34.42908	-119.29635	Ventura River Water Dist	Ventura River-upper	Alluvium
GW-A-04	A	Primary	04N23W16C08S	34.43169	-119.29564	Ventura River Water Dist	Ventura River-upper	Alluvium
GW-A-07	A	Primary	04N23W16B05S	34.43057	-119.29121	Meiners Oaks Co Water	Ventura River-upper	Alluvium
GW-B-03	В	Primary	04N23W20R01S	34.40681	-119.30458	Private	Ventura River-upper	Alluvium
GW-B-04	В	Primary	04N23W29F02S	34.39956	-119.31203	Private	Ventura River-upper	Alluvium
GW-B-05	В	Primary	04N23W29F04S	34.39824	-119.31371	Private	Ventura River-upper	Alluvium
GW-C-04	C	Primary	03N23W08B01S	34.35972	-119.30915	Ventura Water	Ventura River-upper	Bedrock/shallow alluvium ^a
GW-C- BK-05	С	Background	04N23W32Q01S	34.37539	-119.30825	Ojai Valley Land Cons	Ventura River-upper	Bedrock/shallow alluvium ^a
GW-C- BK-06	С	Background	04N23W33N02S	34.37798	-119.30012	Girl Scouts	Ventura River-upper	Bedrock/shallow alluvium ^a
GW-C-07	C	Primary	03N23W05P02S	34.36258	-119.31170	Ventura Water	Ventura River-upper	Bedrock/shallow alluvium ^a
GW-C-08	C	Primary	03N23W08C02S	34.35992	-119.31133	Ventura Water	Ventura River-upper	Bedrock/shallow alluvium ^a
GW-D-04	D	Primary	04N23W28G01S	34.39718	-119.28914	Private	Ventura River-upper	Alluvium
GW-D-05	D	Primary	04N23W22P04S	34.40444	-119.27958	Private	Ventura River-upper	Alluvium
GW-D-07	D	Primary	04N23W33M03S	34.38198	-119.30143	Girl Scouts	Ventura River-upper	Alluvium
GW-E-02	Е	Primary	04N22W07C06S	34.44698	-119.22444	Soule Park Golf Course	Ojai Valley	Alluvium
GW-E-03	Е	Primary	04N22W07C05S	34.44612	-119.22428	Soule Park Golf Course	Ojai Valley	Alluvium
GW-F-02	F	Primary	03N23W06R02S	34.36342	-119.32072	Private	Undefined	Bedrock
GW-G-01	G	Primary	04N23W02M01S	34.45382	-119.26611	Private	Ventura River - Upper	Bedrock
GW-G-02	G	Primary	04N23W02B01S	34.46021	-119.25633	Private	Ventura River - Upper	

^a Located in an area classified as bedrock (i.e., sandstone or mudstone) but where shallow alluvium is likely present based on alluvium thickness information from DBS&A (2018).

Figure 7. Groundwater Sampling Locations

The groundwater sampling wells were characterized based on the level of <u>potential</u> influence from nearby OWTS, which was defined as the number of OWTS located within a certain distance upgradient of the well ("upgradient OWTS density"). This characterization was intended to describe the relative magnitude of <u>potential</u> influence of OWTS, and sampling data collected for the study was then used to determine to what extent the wells were influenced by OWTS. Recent literature has noted trends potentially associating septic density with surface water contamination, using sewage markers, which justifies this approach.

To characterize the upgradient OWTS density, GIS was used to draw a buffer (2,000 feet in radius⁶) around the well location, then the "upgradient area of influence" was defined as the area within this buffer with a ground surface elevation higher than the ground surface elevation at the well location. Groundwater flow patterns roughly correspond to ground surface elevations (more so in alluvium areas than bedrock), so it was assumed that the ground surface elevations could be used to approximate groundwater flow patterns and define the areas where OWTS could influence groundwater from the given well. If the well was located in close proximity to a major waterbody (Ventura River or San Antonio Creek), such that the area (within the buffer and at a higher surface elevation) included area on both sides of the major waterbody, areas on the opposite side of the major waterbody as the well were removed from the upgradient area of influence for the given well. This representation of the area where groundwater may influence groundwater quality at a given well is an approximation and contains uncertainty. The surface water-groundwater model for the VRW currently in development for the SWRCB and RWQCB may be used to confirm or refine these approximations in the future.

The number of OWTS located⁷ within this upgradient area of influence was determined for each sampled well and the OWTS density was calculated using the size of the area of influence for each well. Each sampled well was then classified as having low, medium, or high upgradient OWTS density (to be described further in Section 4.2).

Defining the upgradient OWTS density of wells was used to aid in evaluating the sampling data (to be discussed further in Section 3), and it was also used in confirming the definition of background wells. Background wells were sampled to represent groundwater quality without any potential influence from OWTS. The background wells selected during development of the Monitoring Plan were confirmed as appropriate due to the lack of or very small number of upgradient OWTS present. Table 4 shows the number of OWTS within the upgradient area of influence and corresponding background, low, medium, or high OWTS density designation for

.

⁶ The criteria for selecting this radius will be further discussed in Section 4.2.

⁷ Exact locations of the OWTS are not known. This was represented by the centroid of each parcel identified as having an OWTS.

each sampled well. Figure 8 illustrates the number of upgradient OWTS density and density designations.

Table 4. OWTS Density Upgradient of Sampled Groundwater Wells

Location ID	Number of OWTS	Area of Upgradient Area of Influence ¹ (acres)	Upgradient OWTS Density (#/acre)	Upgradient OWTS Density Designation
GW-C-BK-06	1	182	0.0055	Background
GW-C-BK-05	1	117	0.0085	Background
GW-D-07	5	138	0.036	Low
GW-D-05	10	214	0.047	Low
GW-B-05	15	214	0.070	Low
GW-F-02	11	151	0.073	Low
GW-D-04	20	178	0.11	Low
GW-B-04	41	173	0.24	Medium
GW-G-01	52	205	0.25	Medium
GW-C-04	47	138	0.34	Medium
GW-E-02	43	123	0.35	Medium
GW-A-04	75	189	0.40	Medium
GW-E-03	56	137	0.41	Medium
GW-B-03	40	96	0.42	Medium
GW-G-02	69	166	0.42	Medium
GW-A-02	83	171	0.48	Medium
GW-C-07	85	131	0.65	Medium
GW-A-03	108	142	0.76	Medium
GW-A-07	225	215	1.1	High
GW-C-08	96	82	1.2	High
GW-A-01	222	162	1.4	High

¹ Defined as area with higher ground surface elevation than the ground surface elevation of the well within a circle centered on well having a radius of 2,000 ft, refer to section 4.2.7 for rationale

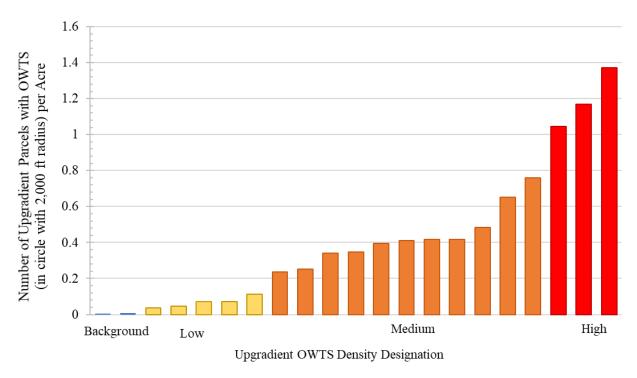


Figure 8. Upgradient OWTS Density of Sampled Wells and Density Designations

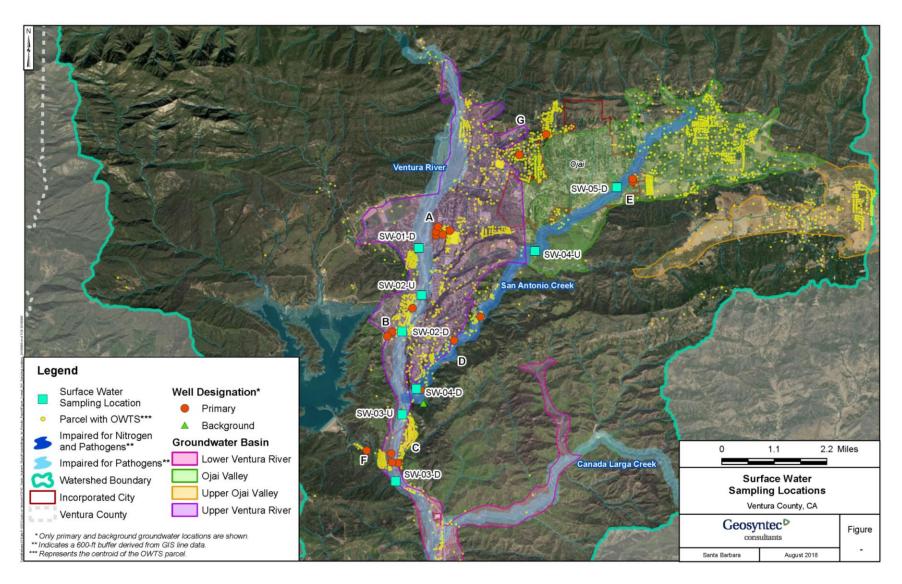
Additionally, available boring logs, well configuration, and local geology were analyzed for each of the sampled wells. It was necessary to evaluate available data in order to determine if the groundwater sampled from the wells has the potential to be influenced by nearby OWTS. Influence was considered unlikely in locations where an impermeable zone (i.e., confining layer such as clay or bedrock) was present above the screened portion of the well, because the impermeable zone prevents interactions between the deeper groundwater extracted from the well and the shallow groundwater influenced by OWTS effluent. However, some areas, such as the Ojai Valley groundwater basin, have confined areas that are fed by unconfined areas, such that confined areas can be influenced by OWTS in unconfined areas. Because this interaction was possible but difficult to evaluate for each well, wells with confined layers above the screened portion of the well were considered unlikely, but not impossible, to be potentially influenced by OWTS.

It was determined that groundwater sampling wells GW-G-01, GW-E-02, GW-E-03, and GW-C-BK-06 are unlikely to be influenced by OWTS effluent based on the presence of an impermeable zone. The entire depth of the GW-G-01 well lies within sespe bedrock, with a screen depth from 100 to 515 feet beneath the ground surface (DWR, 1990). GW-E-02 and GW-E-03 are located in an area with boulders and clay from the ground surface to 115 feet below ground surface, sand/gravel from 115 to 162 feet below ground surface, hard shale from 162 to 170 feet below ground surface, and sand/gravel from 170 to 300 feet below ground surface (VCWPD, 2018a; California Regional Water Pollution Control Board, 1961). GW-E-02 is screened from 200 to 580 feet below ground surface, and GW-E-03 is screened from 192 to 228 feet. Because the screened depth of these wells are located below bedrock, clay, or hard shale, influence from OWTS effluent

is unlikely. Sampling data for these wells have been included in all maps and summary tables (but shown as partially transparent in maps). However, results were not considered as heavily for overall conclusions regarding the potential influence of OWTS on groundwater quality since it was determined that OWTS effluent may not be influencing the sampled groundwater due to the presence of confining layers.

GW-C-BK-06 is primarily in bedrock (clay rock or gravel/rock) and has a screened depth from 60 to 105 feet below ground surface (DWR, 1977). This well also has a low possibility for interactions with OWTS effluent. Because GW-C-BK-06 is located upgradient of OWTS locations and was classified as a background well to evaluate background concentrations, sampling data for this well was still used in analyses. It is important to note that adequate well/boring log data was not found for all sampling locations. Wells without sufficient information available were assumed to have the potential for interactions with OWTS effluent.

2.1.2 Surface Water Sampling Locations


Eight surface water locations were selected for sampling. Locations were selected based on their location on a TMDL-covered stream reach, on an upwelling stream reach, in an area of known dry weather flow, and in relation to other existing monitoring locations and groundwater sampling locations. Additionally, spatial distribution was considered such that a large portion of the reaches were represented. Refer to section 3.3.1 of the Monitoring Plan for a full description of how surface water sampling locations were selected.

All selected groundwater sampling groups have at least one associated downgradient surface water sampling location identified, although some groups are a considerable distance from the nearest upwelling stream reach. It was not possible to have a nearby surface water location for all groundwater monitoring groups. Wells downgradient of OWTS near upwelling reaches were not available in bedrock areas. While groups F and G do not have a nearby surface water location directly associated with them, more distant surface water locations are included and the influence on groundwater in these areas will be used to extrapolate to other areas where surface waters could be impacted. Surface water locations SW-01-D, SW-02-U, SW-04-U, SW-04-D, and SW-05-D are not located on reaches that were previously identified as upwelling during development of the Monitoring Plan (based on information from Cardno Entrix [2012]). Sites SW-04-U and SW-04-D are located in an area of San Antonio Creek where upwelling has been reported, but flow mapping data suggests that these areas can change from year to year. However, the surface water locations sampled during this study had flow during at least one of the sampling events and are therefore upwelling (even if intermittently). The surface water locations sampled for the study are listed in Table 5 and shown in Figure 9.

Table 5. Surface Water Sampling Locations

Location ID	Waterbody	Latitude	Longitude	Upstream or Downstream of GW Sampling Locations	Corresponding GW Sampling Location Group
SW-01-D	Ventura River	34.42516	-119.30253	Downstream	A, G
SW-02-D	Ventura River	34.39972	-119.30829	Downstream	В
SW-02-U	Ventura River	34.41085	-119.30134	Upstream	В
SW-03-D	Ventura River	34.35421	-119.30994	Downstream	C, F
SW-03-U	Ventura River	34.37451	-119.30783	Upstream	С
SW-04-D	San Antonio Creek	34.38237	-119.30276	Downstream	D
SW-04-U	San Antonio Creek	34.42471	-119.25992	Upstream, Downstream	D, G
SW-05-D	San Antonio Creek	34.44436	-119.23018	Downstream, Upstream	E, G

Figure 9. Surface Water Sampling Locations

2.2 Field Procedures

Standard field procedures that were followed during sampling activities are outlined in this section. The Field Forms and Procedures in Appendix A of the Monitoring Plan include detailed instructions for field measurement and sampling procedures (for both groundwater and surface water sampling) used by the field sampling team. Quality assurance and quality control methods outlined in the QAPP were also followed. Appendix A of the Monitoring Plan also contains references to Standard Operating Procedures (SOPs) that were reviewed by the sampling team. These SOPs contain more detailed information on sampling procedures, such as preparation for sampling, equipment needed, procedures for collection of samples, safety concerns, etc.

The general field procedure for groundwater sampling included water level measurement using an electronic water level indicator, purging of three well volumes to remove standing water and to facilitate collection of representative groundwater during sampling, and collection of samples for analysis. Field measurements were recorded at regular time intervals during purging. The general procedure for surface water sampling included collecting field measurements using a water quality meter, making aesthetic observations, measuring flow using a measuring tape and flow meter, and collecting grab samples. For both the groundwater and surface water samples, samples were collected in the laboratory supplied bottles and stored in ice-filled coolers. Additionally, proper chain of custody documentation was maintained until the samples were relinquished to a laboratory courier.

2.3 Sampling Schedule

Sampling occurred at the selected surface water and groundwater locations during three events in August/September 2017, April 2018, and May 2018, as shown in Table 6. During each of these events, 24-25 sites were sampled. Because the sampling design is focused on dry weather periods when groundwater influence on surface water quality is greatest, sampling did not occur during the winter. Additionally, nutrient levels in surface water generally peak in the winter months from winter storm events, which transport nutrients through surface runoff from both urban and agricultural areas.

Table 6. Sampling Event Schedule

Action	Date
Sampling Event #1	8/23/2017 - 8/25/2017; 9/18/2017 - 9/21/2017
Sampling Event #2	4/2/2018 - 4/6/2018
Sampling Event #3	5/14/2018 - 5/17/2018

2.4 Sampling Parameters

Field parameters were collected in the field for groundwater and surface water samples. Additionally, samples were analyzed for nutrients, pharmaceutical and personal care products (PPCPs), and stable nitrate isotopes, as shown in Table 7. Presence of the PPCPs listed in Table 7 may indicate the presence of wastewater impacts. To further identify nitrate sources, stable nitrate isotope analyses were performed.

Sampling parameters were selected with consideration of requirements specified in the Algae TMDL identified as being contributed by OWTS. The Ventura River (and estuary) and its tributaries were identified on the CWA Section 303(d) list of impaired waterbodies for algae, eutrophic conditions, low dissolved oxygen, and nitrogen. The algae and nutrient related impairments are primarily caused by high loadings of nutrients, including nitrogen, and nitrogen load reductions were identified for OWTS in the watershed.

Table 7. Sampling Parameters

Category	Laboratory	Parameter
		Temperature
		рН
		Oxidation-reduction potential (ORP)
Field Parameters	N/A	Turbidity
		Dissolved Oxygen
		Total Dissolved Solids
		Specific Conductivity
		Nitrate-N
Nutrients	Physis Environmental Laboratories, Inc. IIRMES	Nitrite-N
Nutrients	Weck Laboratories, Inc. ^a	Total Nitrogen
		Ammonia-N
		Acetaminophen
		Atenolol
		Azithromycin
PPCPs	Weck Laboratories, Inc.	Caffeine
11015	Week Laboratories, file.	Carbamazepine
		Cotinine
		Primidone
		Sucralose
Isotopes	Source Molecular	d ¹⁸ O-NO ₃
Isotopes	Bource Worceular	$d^{15}N-NO_3$

^a Performed make-up nutrient analyses for select samples

2.5 Potential Impacts from the Thomas Fire

The potential impact of the Thomas Fire on sampling activities for the study was investigated. The Thomas Fire ignited on December 4, 2017 and burned within the VRW, as shown in Figure 10. It was not officially extinguished until June 1, 2018.

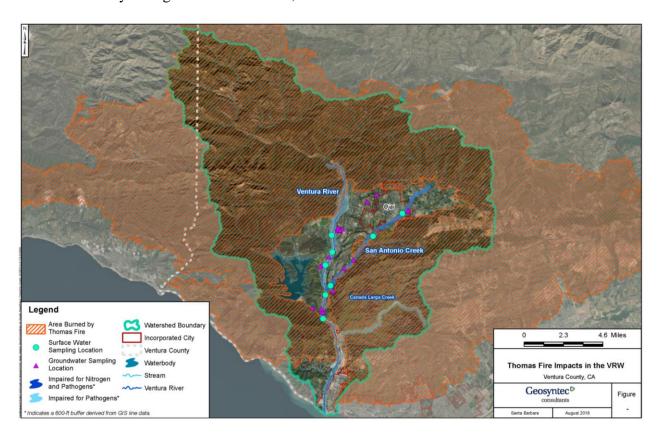


Figure 10. Thomas Fire Perimeter

The Ventura County Watershed Protection District (VCWPD) performed post fire stormwater quality monitoring within Ventura County. Within the VRW, sampling occurred at the major outfalls (Meiners Oaks-1 [MO-MEI] and Ojai-1 [MO-OJA]) and mass emission site (ME-VR2). The drainage areas for these monitoring locations, in addition to portions of the drainage area burned by the Thomas Fire, are shown in Figure 11 through Figure 13.

Regular monitoring at these locations (for nitrate + nitrite as N^8) began in 2009. The first flush and first post-fire storm monitoring event occurred on January 8^{th} and 9^{th} , 2018, and there are a total of three sample results post-fire available for each monitoring location to date. A summary of sample results for nitrate + nitrite as N is shown in Table 8. There was not a significant increase

⁸ Nitrate as N results not available.

in concentrations of nitrate + nitrite due to the Thomas Fire. Although post-fire data is still fairly limited, average nitrate + nitrite concentrations actually decreased post-fire at MO-MEI and ME-OJA, and only increased slightly at ME-VR2 post-fire. Although, the drainage area for MO-MEI was not burned in the Thomas Fire, it is expected to have received significant ash fall throughout the period of adjacent land burn. Data shown in Table 8 includes wet weather data, and this study focused exclusively on dry weather. However, the comparison between pre and post-Thomas Fire data is still informative of any potential changes in water quality due to the fire.

Table 8. Summary of Post-Thomas Fire Impacts

Sampling		oric	Data (Į	ore-fire	e)	First flush/ post-fire Event (Jan 8-9, 2018)	F	Post-f	ïre to	Presen	ıt
Location	Date	n ¹	Nitrat	te + Nit (mg/I	trite as N	Nitrate + Nitrite	Date n ¹ Nitrate + Ni N (mg/				
	Range		Min	Max	Average	(mg/L)	Range		Min	Max	Average
ME-VR2	10/14/09 - 1/19/17	26	0.076	1.6	0.53	0.54	1/9/18 - 3/11/18	3	0.49	0.83	0.62
MO- MEI ²	10/14/09 - 1/19/17	25	0.25	2.1	0.91	0.92	1/9/18 - 3/11/18	3	0.37	0.92	0.58
ME-OJA	10/14/09 - 1/19/17	25	0.01	2.2	0.61	0.4	1/9/18 - 3/11/18	3	0.32	0.4	0.35

 $[\]frac{1}{1}$ n = number of samples

²The drainage area of MO-MEI was not burned by the Thomas Fire.

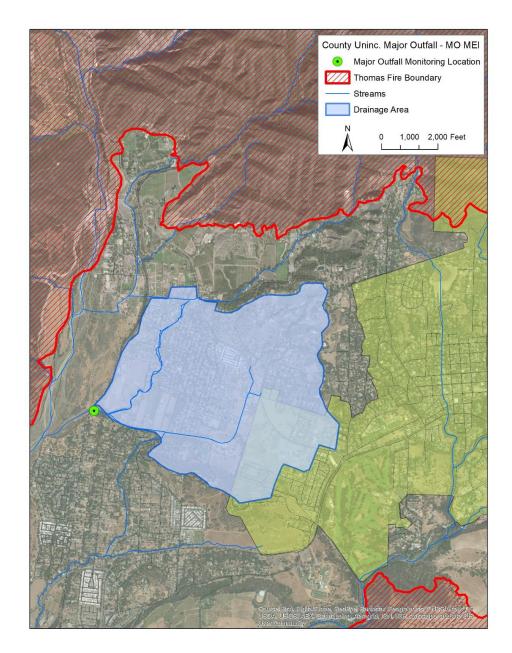


Figure 11. Thomas Fire Impacts – Meiners Oaks Major Outfall Drainage Area (VCWPD, 2018b)

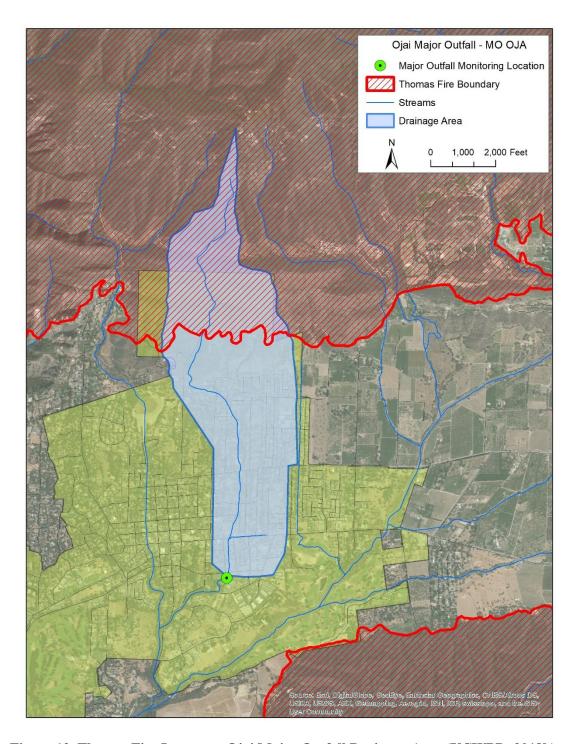


Figure 12. Thomas Fire Impacts – Ojai Major Outfall Drainage Area (VCWPD, 2018b)



Figure 13. Thomas Fire Impacts – Mass Emissions VR2 Drainage Area (VCWPD, 2018b)

2.6 Lab Analyses

Analytical methods were selected from USEPA-approved methods, where possible, to meet Monitoring Plan requirements, including ensuring reporting accuracy and method detection limits. The contracted laboratories supplied certified-clean sample containers for all analyses. Additional information regarding analytical data quality objectives, including accuracy, precision, percent recovery, target reporting limits, and completeness are included in the QAPP (Geosyntec Consultants, 2017b). Table 9 shows the analytical methods, container types, sample volumes, preservative requirements, and holding times for laboratory analyses.

Table 9. Laboratory Analyses

Parameter	Units	Analysis Method	Bottle Type	Bottle Size	Preservative	Holding Time (days)
Nitrate-N	mg/L	EPA 300.0	Polyethylene	500 mL ^a or	< 6°C	2
Nitrite-N	mg/L	EPA 300.0	Polyeulylene	1000 mL ^b	< 0 C	2
Ammonia-N	mg/L	EPA 350.1		500 mL ^a or		
Total Nitrogen	mg/L	Catalytic Combustion	Polyethylene	1000 mL ^b	<6°C, H ₂ SO ₄	28
PPCPs ^c	ng/L	1694-ESI+	Amber glass	2 x 1000 mL	<4°C, Sodium azide, Ascorbic acid	28
Nitrate isotopes	‰	Adapted from USGS method 2900	HDPE	2 x 100 mL	<4°C, filtered	7

^a Used for Sampling Event #1

2.7 Summary of Sampling Data Collected

Over the course of the three sampling events, samples were collected from 21 groundwater wells and eight surface water locations. Table 10 and Table 11 summarize the number of sampling events where samples were collected for each groundwater monitoring well and surface water sampling location, respectively. Most sites were sampled during all three events; however, due to access limitations to wells and no flow at some surface water sites, some sites were only sampled during one or two events.

^b Used for Sampling Events #2 and #3

^cFull list of PPCPs is included in Section 2.4

Table 10. Sampling Event Summary for Groundwater Wells

Area Geology	Group	Location ID	Number of Samples Collected
		GW-A-01	3
		GW-A-02	3
Alluvium	A	GW-A-03	3
		GW-A-04	3
		GW-A-07	3
		GW-B-03	3
Alluvium	В	GW-B-04	3
		GW-B-05	1
		GW-C-01 ^b	1
	C	GW-C-04	1
Bedrock/shallow alluvium ^a		GW-C-07	3
Bedrock/snanow anuvium	С	GW-C-08	3
		GW-C-BK-05	2
		GW-C-BK-06	3
		GW-D-04	2
Alluvium	D	GW-D-05	3
		GW-D-07	3
A 11	Е	GW-E-02	2
Alluvium	E	GW-E-03	3
Bedrock	F	GW-F-02	3
D 1 1	C	GW-G-01	3
Bedrock	G	GW-G-02	3
Total			57

^a Located in an area classified as bedrock (i.e., sandstone or mudstone) but where shallow alluvium is

likely present (DBS&A, 2018).

^b Sampled once but not included in analyses because site was determined not representative of unconfined groundwater.

Table 11. Sample Event Summary for Surface Water

Waterbody	Location ID	Corresponding GW Sampling Location Group	Upstream or Downstream of GW Sampling Locations	Number of Samples Collected
	SW-01-D	A, G	Downstream	2
	SW-02-D	В	Downstream	1
Ventura River	SW-02-U	В	Upstream	2
	SW-03-D	C, F	Downstream	3
	SW-03-U	С	Upstream	3
	SW-04-D	D	Downstream	2
San Antonio Creek	SW-04-U	D, G	Upstream, Downstream	2
CICCK	SW-05-D	E, G	Downstream, Upstream	2
Total				17

3 SAMPLING DATA EVALUATION

Sampling results for nutrients, PPCPs, and nitrate isotopes were each evaluated as three separate potential lines of evidence for OWTS impacts to groundwater and subsequently, surface water. Elevated nutrient levels downgradient of OWTS were investigated in groundwater sampling results to identify areas where groundwater was potentially impacted by OWTS. PPCPs and nitrate isotope ratios were used as supporting lines of evidence that groundwater was impacted by OWTS. Any PPCP result above the laboratory reporting limit was considered evidence of OWTS impacts. Similarly, nitrate isotope ratios within the published range for sewage were considered to be an indication of OWTS impacts. Finally, surface water data near areas of potentially impacted groundwater were examined, for nutrients, PPCPs, and nitrate isotopes, for potential impacts to surface waters due to OWTS.

3.1 Nutrient Sampling Results

Groundwater and surface water samples were analyzed for ammonia, nitrite, nitrate, and total nitrogen. Table 12 shows the average nitrogen concentrations in groundwater (averaged over all sampling events), and Table 13 shows average nitrogen concentrations in surface water (also averaged over sampling events). Figure 14 illustrates average nitrate concentrations for both groundwater and surface water spatially. Although samples were analyzed for ammonia, nitrite, nitrate, and total nitrogen, evaluation of results focused more heavily on nitrate results. Ammonia is high in septic effluent/sewage but is quickly converted to nitrate in the subsurface, which is relatively stable in groundwater (AWWA, 2002). Ammonia was not detected in most samples and nitrite was either not detected or detected at very low concentrations, so these were not likely impacting surface water throughout the VRW. Nitrogen results for all individual samples are included in Appendix A.

Geosyntec consultants

In general, nitrogen results show higher nitrate levels in groundwater located within bedrock geology (vs. alluvial), and where there are higher densities of nearby upgradient OWTS. Nitrate levels in surface water appear to be highest in areas not previously identified as upwelling during development of the Monitoring Plan (based on available information). These trends will be discussed further in Section 4.

Table 12. Average Nitrogen Concentrations in Groundwater from Study

			Upgradient OWTS	Sample	Ave	rage Conc	entration in	mg/L
Location ID	Group	Geology	Density (#/acre)	Sample Size	Ammonia	Nitrate as N	Nitrite as N	Total
GW-A-01	A	Alluvium	High (1.4)	3	as N ND	5.88	ND ND	Nitrogen ^c 8.21
GW-A-02	A	Alluvium	Medium (0.48)	3	0.08	3.36	0.03	4.32
GW-A-03	A	Alluvium	Medium (0.76)	3	ND	4.76	0.03	5.92
GW-A-04	A	Alluvium	Medium (0.40)	3	ND	2.25	0.03	3.22
GW-A-07	A	Alluvium	High (1.0)	3	0.10	11.26	0.03	14.33
GW-B-03	В	Alluvium	Medium (0.42)	3	ND	1.82	0.02	2.46
GW-B-04	В	Alluvium	Medium (0.24)	3	ND	1.14	0.03	1.73
GW-B-05	В	Alluvium	Low (0.070)	1	DNQ	3.05	0.04	6.19
GW-C-04	С	Bedrock/Shallow Alluvium ^a	Medium (0.34)	1	ND	3.25	ND	6.40
GW-C-07	С	Bedrock/Shallow Alluvium ^a	Medium (0.65)	3	ND	1.44	ND	2.26
GW-C-08	С	Bedrock/Shallow Alluvium ^a	High (1.2)	3	ND	1.79	ND	2.44
GW-C-BK-05 ^b	С	Bedrock/Shallow Alluvium ^a	Background (0.0085)	2	ND	1.27	0.04	2.49
GW-C-BK-06 ^b	C	Bedrock/Shallow Alluvium ^a	Background (0.0055)	3	3.25	0.44	0.04	4.47
GW-D-04	D	Alluvium	Low (0.11)	2	ND/DNQ	2.45	ND	3.77
GW-D-05	D	Alluvium	Low (0.047)	3	3.54	0.19	ND	3.63
GW-D-07	D	Alluvium	Low (0.036)	3	ND	0.29	ND	0.42
GW-E-02	Е	Alluvium	Medium (0.35)	2	ND	2.19	ND	2.24
GW-E-03	Е	Alluvium	Medium (0.41)	3	1.09	2.19	0.02	5.58
GW-F-02	F	Bedrock	Low (0.073)	3	ND	6.05	0.03	9.49
GW-G-01	G	Bedrock	Medium (0.25)	3	0.03	5.05	ND	7.23
GW-G-02	G	Bedrock	Medium (0.42)	2	ND	13.85	0.03	17.87

^a Located in an area classified as bedrock (i.e., sandstone or mudstone) but where shallow alluvium is likely present (DBS&A, 2018).

^b Designated as a background well based on upgradient OWTS density (see Section 2.1.1).

^c Includes organic nitrogen

Table 13. Average Nitrogen Concentrations in Surface Water from Study

Location ID Waterbody	Waterbody	Upstream or Downstream of GW	Corresponding GW Sampling	Sample	Av	erage Concentration in mg/L		
	Sampling Locations	Location Group	Size	Ammonia as N	Nitrate as N	Nitrite as N	Total Nitrogen ^a	
SW-01-D	Ventura River	Downstream	A, G	2	ND	4.39	ND	4.43
SW-02-D	Ventura River	Downstream	В	1	ND	0.59	ND	0.59
SW-02-U	Ventura River	Upstream	В	2	ND	0.23	ND	0.10
SW-03-D	Ventura River	Downstream	C, F	3	DNQ	1.03	0.03	1.49
SW-03-U	Ventura River	Upstream	С	3	DNQ	1.35	ND	2.01
SW-04-D	San Antonio Creek	Downstream	D	2	ND	0.75	ND	0.79
SW-04-U	San Antonio Creek	Upstream, Downstream	D, G	2	ND	2.65	ND	2.65
SW-05-D	San Antonio Creek	Downstream, Upstream	E, G	2	ND	1.31	ND	1.39

^a Includes organic nitrogen

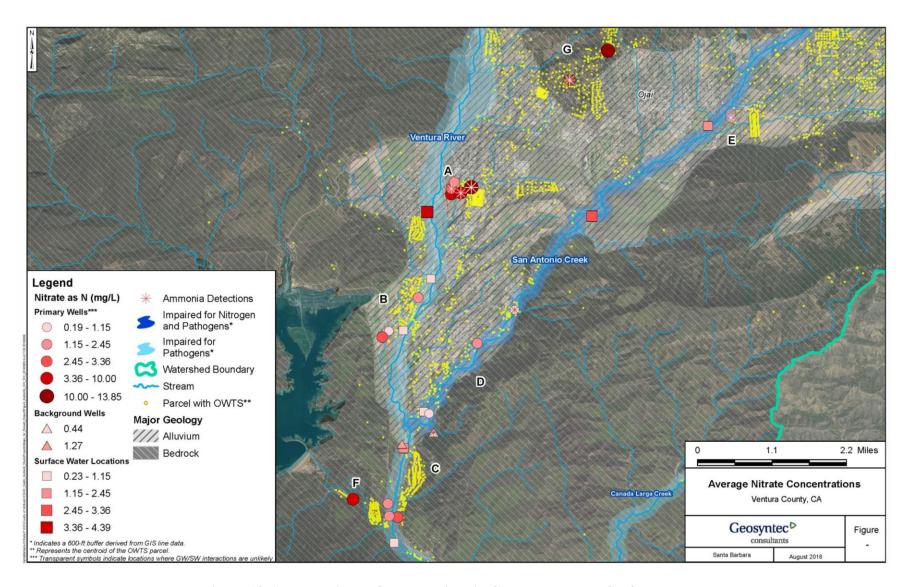
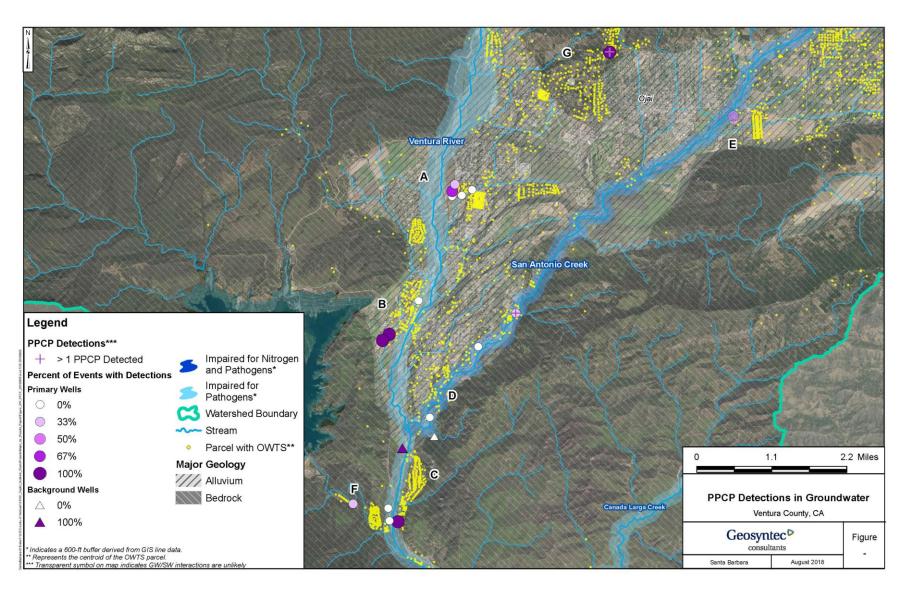


Figure 14. Average Nitrate Concentrations in Groundwater and Surface Water

3.2 PPCP Sampling Results

Samples were also analyzed for a suite of PPCPs commonly associated with sewage and septic effluent (listed in Section 2.4). No PPCPs were detected at any of the surface water locations for any sampling event. Approximately half of the groundwater wells did not have any PPCPs detected during any of the sampling events, while approximately half had detections for one or two PPCPs for one or more of the sampling events, as shown in Table 14. Caffeine was not included in the detection counts for groundwater or surface water due to significant lab and field blank contamination. The PPCP detections observed in groundwater are illustrated in Figure 15.


Table 14. PPCP Detections in Groundwater

Location ID	Geology	Upgradient OWTS Density (#/acre)	PPCPs Detected ^{ab} (No. Detections / No. Samples)
GW-A-01	Alluvium	High (1.4)	None
GW-A-02	Alluvium	Medium (0.48)	Sucralose (2/3)
GW-A-03	Alluvium	Medium (0.76)	None
GW-A-04	Alluvium	Medium (0.40)	Sucralose (1/3)
GW-A-07	Alluvium	High (1.0)	None
GW-B-03	Alluvium	Medium (0.42)	None
GW-B-04	Alluvium	Medium (0.24)	Sucralose (3/3)
GW-B-05	Alluvium	Low (0.070)	Sucralose (1/1)
GW-C-04	Bedrock/Shallow Alluvium ^a	Medium (0.34)	Sucralose (1/1)
GW-C-07	Bedrock/Shallow Alluvium ^a	Medium (0.65)	None
GW-C-08	Bedrock/Shallow Alluvium ^a	High (1.2)	None
GW-C-BK-05	Bedrock/Shallow Alluvium ^a	Background (0.0085)	Atenolol (1/2)
GW-C-BK-06	Bedrock/Shallow Alluvium ^a	Background (0.0055)	None
GW-D-04	Alluvium	Low (0.11)	None
GW-D-05	Alluvium	Low (0.047)	Azithromycin (1/3), Sucralose (1/3)
GW-D-07	Alluvium	Low (0.036)	None
GW-E-02	Alluvium	Medium (0.35)	Atenolol (1/2)
GW-E-03	Alluvium	Medium (0.41)	Primidone (1/3), Sucralose (1/3)
GW-F-02	Bedrock	Low (0.073)	Sucralose (1/3)
GW-G-01	Bedrock	Medium (0.25)	None
GW-G-02	Bedrock	Medium (0.42)	Azithromycin (1/3), Sucralose (3/3)

^a PPCPs detected above the Method Detection Limit (MDL) but below the Detection Limit for Reporting (DLR) were not counted as detected.

^b Caffeine was not included in the detection counts due to significant lab and field blank contamination.

Figure 15. PPCP Detections in Groundwater

3.3 Nitrate Isotopes Sampling Results

Samples from groundwater and surface water were also analyzed for stable nitrate isotopes to help further identify nitrate sources. Nitrate from ammonium fertilizer, soil organic matter, and septic waste have similar values of d¹⁸O, so d¹⁵N is better used to distinguish among sources. However, for nitrate from nitrate fertilizer or atmospheric sources, d¹⁸O is better used to distinguish because d¹⁵N values are overlapping. Denitrification, and the degree of it, has an important influence on the isotopic composition of the source water along its pathway to the stream. d¹⁸O and d¹⁵N values of nitrate can be plotted to aid in identifying the source, as shown in the example (Figure 16) from USGS.

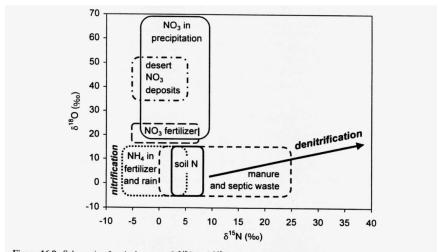


Figure 16.9. Schematic of typical ranges of $\delta^{18}O$ and $\delta^{15}N$ values of nitrate from various sources, simplified from data presented in Figure 16.6. Nitrification of ammonium and/or organic-N in fertilizer, precipitation, and organic waste can produce a large range of δ values, as shown. Soil waters tend to have higher NO_3 - $\delta^{18}O$ values, and a larger range of NO_3 - $\delta^{18}O$ values, than groundwaters because of the higher $\delta^{18}O$ values of O_2 and/or O_3 - O_3 - O_4 - O_3 - O_4 - O_5 - O_4 - O_5

Figure 16. Example Plot of d¹⁸O and d¹⁵N

Table 15 shows the average d¹⁸O and d¹⁵N values for each groundwater sampling well, and Figure 17 illustrates the nitrate isotopes for all groundwater samples, with the different colors representing groups of groundwater wells. The isotopic composition is clustered by groundwater location group, especially for groups A, B, E, F, and G, while C and background locations were clustered but not as tightly and group D locations are less clustered. This clustering of wells by group shows that groundwater within the groups (i.e., geographic location) are isotopically similar and are likely impacted by the same sources. The isotopic ratios for all groundwater samples analyzed was within the range expected for nitrate from animal waste and/or sewage. The isotopic composition of the background locations is higher and less clustered compared to the other groundwater locations⁹.

⁻

⁹ The well with the PPCP detection (GW-C-BK-05) has a lower ratio than the other background well (GW-C-BK-06).

The higher and wider range of isotope values in background groundwater wells may be the result of denitrification and a longer extent of exposure to anoxic geologic layers.

Table 15. Nitrate Isotopes Summary in Groundwater

Location ID	Geology	Upgradient OWTS Density (#/acre)	Sample Size	Count Low Nitrate	Average d ¹⁵ N (‰)	Average d ¹⁸ O (‰)
GW-A-01	Alluvium	High (1.4)	3	0	7.3	3.6
GW-A-02	Alluvium	Medium (0.48)	3	0	5.9	3.6
GW-A-03	Alluvium	Medium (0.76)	3	0	6.6	3.4
GW-A-04	Alluvium	Medium (0.40)	3	0	5.7	3.7
GW-A-07	Alluvium	High (1.0)	3	0	7.6	3.7
GW-B-03	Alluvium	Medium (0.42)	3	0	5.8	3
GW-B-04	Alluvium	Medium (0.24)	3	0	6.3	3.2
GW-B-05	Alluvium	Low (0.070)	1	0	7	4.4
GW-C-04	Bedrock/Shallow Alluvium ^a	Medium (0.34)	1	0	12	7.4
GW-C-07	Bedrock/Shallow Alluvium ^a	Medium (0.65)	3	0	9.6	5.1
GW-C-08	Bedrock/Shallow Alluvium ^a	High (1.2)	3	0	9.4	5
GW-C-BK-05	Bedrock/Shallow Alluvium ^a	Background (0.0085)	3	1	10	5.8
GW-C-BK-06	Bedrock/Shallow Alluvium ^a	Background (0.0055)	3	1	20	13
GW-D-04	Alluvium	Low (0.11)	2	0	11	5.3
GW-D-05	Alluvium	Low (0.047)	3	0	4.6	4.3
GW-D-07	Alluvium	Low (0.036)	3	1	11	3.3
GW-E-02	Alluvium	Medium (0.35)	2	0	7.8	8.6
GW-E-03	Alluvium	Medium (0.41)	3	0	7	6.7
GW-F-02	Bedrock	Low (0.073)	3	0	8.6	7.3
GW-G-01	Bedrock	Medium (0.25)	3	0	7.3	8.5
GW-G-02	Bedrock	Medium (0.42)	3	0	11	3.7

^a Samples that the laboratory reported as "low nitrate" and thus no isotopic composition was reported

.

Figure 17. Nitrate Isotopes Summary in Groundwater (by Group)

Table 16 shows average nitrate isotope ratios over the sampled events for surface water locations. Figure 18 illustrates the nitrate isotopes for groundwater and surface water samples in close proximity (both upstream and downstream), if applicable, with the different colors representing the different groups. Similarly to groundwater, the surface water isotopic ratios fell within the expected range for nitrate from animal waste and/or sewage. It is expected that if the surface waters are impacted by nitrate from groundwater then the surface water isotope ratios would be higher than the associated groundwater isotopes due to denitrification along the flow path (because of anoxic creek sediments). This is true for some locations (groups C, D, and E), but not others (groups A and B). Where the isotopic ratios are similar or higher in surface waters than in upgradient wells, this suggests that the same nitrate source is impacting both samples and that groundwater may be impacting surface water.

Table 16. Nitrate Isotopes Summary in Surface Water

Location ID	Waterbody	Upstream or Downstream of GW Sampling Locations	Corresponding GW Sampling Location Group	Sample Size	Count Low Nitrate ^a	Average d ¹⁵ N (‰)	Average d ¹⁸ O (‰)
SW-01-D	Ventura River	Downstream	A, G	2	1	2.6	0.9
SW-02-U	Ventura River	Downstream	В	2	1	4.7	3.5
SW-02-D	Ventura River	Upstream	В	1	0	3.5	1.8
SW-03-U	Ventura River	Downstream	C, F	3	0	8.6	4.9
SW-03-D	Ventura River	Upstream	С	4	0	12	6.8
SW-04-U	San Antonio Creek	Downstream	D	2	1	10	7
SW-04-D	San Antonio Creek	Upstream, Downstream	D, G	2	1	12	7.3
SW-05-D	San Antonio Creek	Downstream, Upstream	E, G	2	0	15	9.8

^a Samples that the laboratory reported as "low nitrate" and thus no isotopic composition was reported.

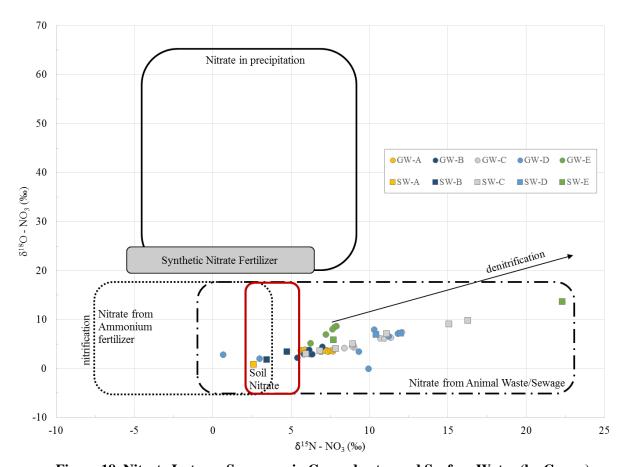


Figure 18. Nitrate Isotopes Summary in Groundwater and Surface Water (by Group)

Table 17 shows the average d¹⁸O and d¹⁵N values for groundwater wells located in varying geologic features. Figure 19 shows the nitrate isotopes for groundwater samples, separated by geology. Bedrock and bedrock/alluvium locations (areas identified with bedrock geology but most likely have shallow alluvium) tend to have higher values than alluvium geology.

Table 17. Nitrate Isotopes Summary in Groundwater by Geology

Group Geology	Count Samples	Count Low Nitrate ^a	Average d ¹⁵ N (‰)	Average d ¹⁸ O (‰)
Alluvium	35	1	6.9	4.2
Bedrock/shallow alluvium	14	2	12	6.8
Bedrock	9	0	9.0	6.5

^a Samples that the laboratory reported as "low nitrate" and thus no isotopic composition was reported.

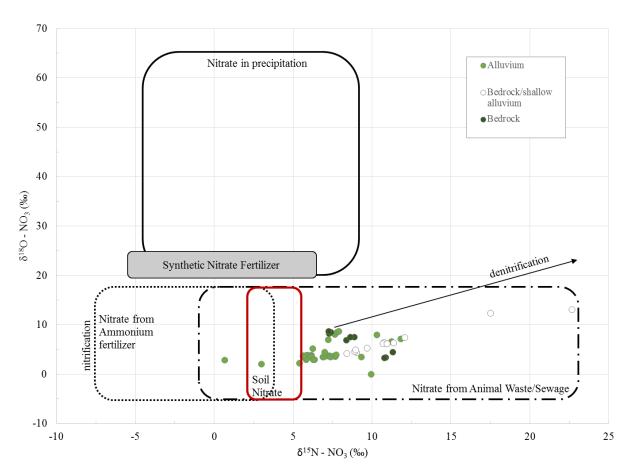


Figure 19. Nitrate Isotopes Summary in Groundwater (by Geology)

4 IDENTIFICATION OF HIGH RISK AREAS

4.1 Approach for Development of Risk Map

As previously described, the purpose of this study is to define the geographic extent of OWTS that are contributing significant nitrogen loads to the TMDL-covered reaches of the Ventura River and its tributaries. The general approach for this is described in this section by study question. Sampling data collected during this study are evaluated and used to answer the study questions, as described in subsequent sections.

Are groundwater nitrogen levels elevated downgradient of OWTS areas (and if yes, which areas)?

Areas with OWTS throughout the VRW were previously identified, and groundwater wells located downgradient of these areas with OWTS were sampled and analyzed for nutrient levels. Areas with high observed nitrate levels were noted. It should be noted that the average nitrate concentration in the background wells was 0.77 mg/L. Therefore, background nitrate levels in groundwater were also considered when evaluating whether nitrate levels were elevated.

Are these areas also impacted by sewage indicators that would further support OWTS as a source (if yes, which areas)?

Within the areas that were identified with high nitrate levels in groundwater, it was then determined if these high nutrient levels were potentially caused by OWTS. Analysis of PPCPs (as chemical sewage indicators) and stable nitrate isotopes were conducted. Detections of PPCPs and nitrate isotope ratios matching sewage sources would suggest the presence of sewage (i.e., influence from OWTS) in groundwater.

Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations (if yes, downstream of which OWTS areas)?

Finally, surface water data was also examined to determine if high nitrogen concentrations, in addition to the presence of PPCPs and/or nitrate isotopes matching sewage sources, were present in the areas where influence to groundwater from OWTS was determined to be likely (based on the analyses described above). This is examined in upwelling areas, where groundwater and surface water interaction is likely.

Observations and conclusions from the above analyses in sampled areas were then extrapolated to the entire watershed. Results identifying areas influenced by OWTS were used to identify areas with high and low probability of OWTS influencing surface waters where sampling wasn't performed.

4.2 Discussion of Sampling Data

Several groundwater wells within a given area were sampled to provide a robust characterization of groundwater in the area. Additionally, surface water sampling locations were selected to correspond to the groundwater sampling locations. The sampling results for these groups of sampling locations (identified as A, B, C, etc.) were evaluated separately in the subsections below, in order to identify conclusions that may differ from group to group. Figure 20 summarizes nutrient and PPCP sampling data for both groundwater and surface water and aids in the overall analysis of sampling data.

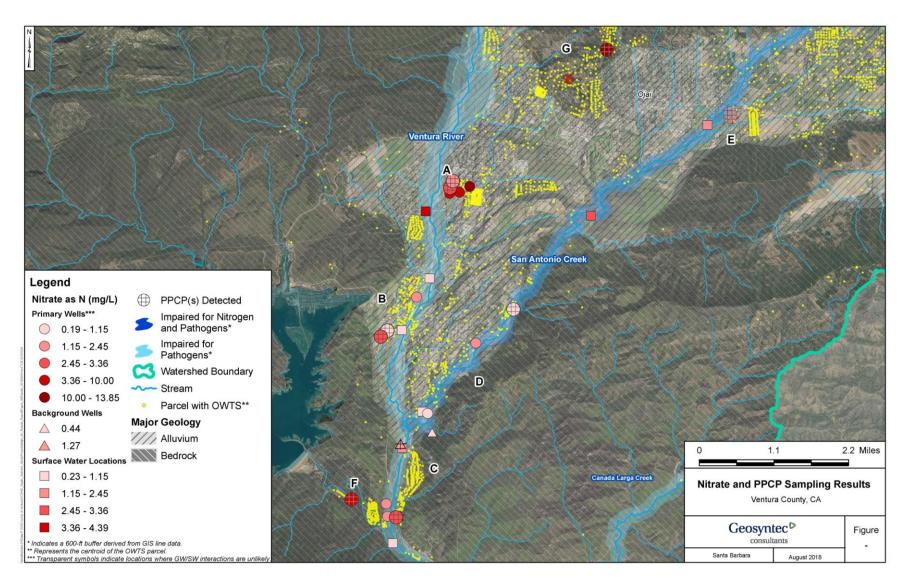


Figure 20. Summary of Nitrate and PPCP Sampling Data

4.2.1 Group A

Group A consists of five groundwater wells in the alluvium; the upgradient area has medium density OWTS, but there is also a small neighborhood with high density. As a result, two sampled wells in Group A were classified as high density upgradient OWTS and the other three wells were considered to have medium density upgradient OWTS.

Differences were noted in nutrient levels by proximity to high density OWTS in the area. The well located directly downgradient and in very close proximity to the neighborhood with high density OWTS had an average nitrate concentration of 11 mg/L. The other well identified as having high density upgradient OWTS, located just downgradient of the well in closest proximity to the highest density OWTS area, had an average nitrate concentration of 5.9 mg/L. Both wells also had ammonia detected. As the distance from this neighborhood with high density OWTS increases (towards the Ventura River), the average nitrate concentration decreases. This is likely due to nitrate undergoing denitrification and/or dilution. One of the wells identified as medium density is located slightly north of the high density neighborhood and likely is not impacted by this area. This well had the lowest concentration of nitrate in groundwater of the group (2.3 mg/L).

Two of the five wells in this group also had detections of PPCPs – sucralose concentrations were above the detection level (5.0 ng/L) twice in GW-A-02 (5.3 ng/L and 7.6 ng/L) and once in GW-A-04 (8.1 ng/L) - suggesting that groundwater in this area is influenced by sewage and/or septic effluent. Within this group, the three wells with the highest average nitrate concentrations did not have any detects of PPCPs, while the two wells with the lowest concentrations of nitrate in groundwater did have detected PPCPs. However, the presence of PPCPs in OWTS is expected to be highly variable with many households having little to no sucralose and other PPCPs in their wastewater. Nitrate isotope analysis identified the nitrate measured in the groundwater in Group A as likely from animal waste and/or sewage source, which is also consistent with OWTS impacts. Therefore, nutrient, PPCP, and nitrate isotope results all suggest that groundwater in group A is likely influenced by upgradient OWTS. Sanitary sewer lines are also present immediately upgradient of Group A groundwater wells and therefore it is possible that sanitary sewer leaks may also be impacting this area.

The group A surface water sampling location on the Ventura River, just downstream of the groundwater wells, had the highest average nitrate concentration of all surface water locations. No PPCPs were detected in surface water and the nitrate isotope ratios were lower than that of the nearby groundwater wells, identified as having soil or animal waste and/or sewage sources of nitrate. The high nitrate levels suggest that surface water at this location was **likely** impacted by the groundwater analyzed in group A, but other sources of nitrate could also be potentially impacting surface waters in this stream reach such as land application of animal manure on upgradient croplands and orchards.

4.2.2 Group B

Group B consists of three wells located in the alluvium, and two surface water locations (one upstream and one downstream of the wells). Two of the wells were classified as medium upgradient OWTS density, and the third well was considered to have low upgradient OWTS density. Average nitrate concentrations in these three wells ranged from 1.1 mg/L to 3.1 mg/L. PPCPs were detected in two out of the three wells (5.8 ng/L to 9.3 ng/L of sucralose) suggesting that groundwater in this area is influenced by sewage and/or septic effluent. Nitrate isotope analysis identified the nitrate measured in the groundwater in group B as likely from animal waste and/or sewage sources, which is also consistent with OWTS impacts. Therefore, nutrient, PPCP, and nitrate isotope results all suggest that groundwater in group B is likely influenced by upgradient OWTS, although to a lesser extent compared to group A based a lower density of upgradient OWTS and lower average nitrate concentrations in groundwater. There are also some sanitary sewers located upgradient of the wells, and one sanitary sewer pipe is located in very close proximity to GW-B-04, which had three detects of sucralose.

Both the upstream and downstream surface water locations had low average concentrations of nitrate (less than 1.15 mg/L) and no PPCPs were detected. The nitrate isotope ratios in surface water samples were lower than that of the nearby groundwater wells, identified as having soil or animal waste and/or sewage sources of nitrate. These results suggest that surface water in group B was **not likely** impacted by the nearby groundwater analyzed in group B, and that other sources of nitrate are likely impacting surface waters in this stream reach, although not to the extent that nitrogen levels were above the TMDL allowable in-stream concentration during this investigation.

4.2.3 Group C

Group C consists of three groundwater wells that are located in an area classified as bedrock, but where shallow alluvium is most likely present (DBS&A, 2018). Two of the wells are classified as having medium upgradient OWTS density, and the third has high upgradient OWTS density. There are also two surface water sampling locations (located upstream and downstream of the wells), and this group is located within a reach identified as consistently upwelling based on available information. Average nitrate concentrations in groundwater ranged from 1.4 mg/L to 3.3 mg/L, and PPCPs (18 ng/L of sucralose) were detected in the well with the highest nitrate concentration. There were also two background wells identified near group C both with relatively low average nitrate concentrations (0.44 mg/L and 1.3 mg/L). Nitrate isotope analysis identified the nitrate measured in the groundwater as likely from animal waste and/or sewage source. Therefore, nutrient, PPCP, and nitrate isotope results all suggest that groundwater in group C is likely influenced by upgradient OWTS at a similar level to group B. However, a sanitary sewer pipe is located in close proximity to GW-C-04 and could potentially be influencing groundwater here.

Surface water locations were relatively low for nitrate. Average concentrations were 1.0 mg/L at the downstream location and 1.4 mg/L nitrate at the upstream location, showing there were nutrient

impacts in the upstream area that were impacting surface water above the TMDL allowable instream concentration, but that loading from groundwater and other sources in this reach did not result in an increase in concentration on average in this investigation (rather the average concentration decreased to below the TMDL allowable in-stream concentration). No PPCPs were detected in surface water. However, all locations in Group C had sources identified as animal waste and/or sewage based on the analysis of nitrate isotopes. Therefore, surface waters in this area **are not likely** to be influenced by OWTS.

4.2.4 Group D

Group D sampling locations were located in the alluvium and included three groundwater wells, in addition to one upstream and one downstream surface water sampling location. The three wells were all classified as having low upgradient OWTS density. This group of groundwater wells was slightly different from other groups in that the wells were not in close proximity. Average nitrate concentrations ranged from 0.19 mg/L to 2.5 mg/L, and PPCPs were detected in one well (2.4 ng/L of azithromycin and 7.2 ng/L of sucralose). Nitrate isotope analysis identified the nitrate measured in the groundwater as likely from animal waste and/or sewage sources at most wells and in the range of either animal waste and/or sewage sources, soil sources, or ammonium fertilizer sources for two samples. Therefore, nutrient, PPCP, and nitrate isotope results all suggest that groundwater in group C may be influenced by upgradient OWTS, although not to the same extent as other groups. There is a sanitary sewer pipe in close proximity to the groundwater wells in group D, which could also potentially be impacting groundwater.

The surface water sampling location located more distant upstream was high in nitrate (average of 2.7 mg/l) and the downstream location was low (0.75 mg/L), suggesting that nutrient loading in this reach was not contributing to TMDL exceedances of nitrogen in the stream. Surface water samples were considered to have animal waste and/or sewage sources based on the nitrate isotope analysis, which was true of all sampling results. Upstream nitrogen loading may be from OWTS and/or animal manure sources from cropland/irrigated pastureland, which is extensive upstream of these locations. The City of Ojai could also be contributing urban runoff and runoff from residential fertilizer use/golf courses. But surface waters downstream are **not likely** to be influenced by OWTS.

4.2.5 Group E

Group E included two groundwater wells along San Antonio Creek, that were considered to have medium density upgradient OWTS, and one downstream surface water location (in the alluvium). Although it was determined that it was unlikely that the collected samples were able to be influenced by OWTS based on the screened depth in the wells and confining layers (but still possible because confined areas can be fed by unconfined areas) (as discussed in Section 2.1.1), PPCPs were detected in both wells (1.3 ng/L of atenolol and 6.5 ng/L of sucralose). This may be due to the persistence of PPCPs in groundwater and the large number of OWTS further upgradient

in the watershed loading groundwater in areas beyond this confining layer. A sanitary sewer line is also located in somewhat close proximity and upgradient. Average groundwater nitrate concentrations were 2.2 mg/L for both wells.

The downstream surface water location had an average nitrate concentration of 1.4 mg/L. No PPCPs were detected in surface water. Nitrate isotope results suggest that both groundwater and surface water samples had nitrate sources from animal waste and/or sewage. Large portions of the surrounding area are utilized for orchards and vineyards, so land application of manure may also be a contributing source of nitrate. Based on these results, it **is likely that** groundwater and surface waters in this area are influenced by nearby OWTS.

4.2.6 Group F (Bedrock)

Group F consisted of one groundwater well (with medium density upgradient OWTS) located near Coyote Creek below Casitas Dam in an area with bedrock geology. Groundwater is expected to move slowly in bedrock areas unless fractures allow preferential flow paths providing more rapid transport. These flow paths would be more heterogeneous and unpredictable compared to alluvial areas. The average nitrate concentration in this well was relatively high (6.1 mg/L), and PPCPs were also detected (32 ng/L of sucralose). All of the samples from the groundwater well had sources considered to be animal waste and/or sewage based on the nitrate isotope results.

PPCPs were detected in the groundwater well, and detected sucralose concentrations in groundwater were notably higher than those detected in wells located in alluvium. Groundwater had sources considered to be animal waste and/or sewage based on the nitrate isotope results and the well is not likely to be influenced by sanitary sewer systems.

Therefore, it is **highly likely** based on multiple lines of evidence that groundwater in this bedrock area is influenced by OWTS. This area is not located in close proximity to downgradient flowing surface waters. However, surface waters downgradient of group F were low for nitrate (1.0 mg/L), so surface waters are **likely not** being impacted downstream of group F.

4.2.7 Group G (Bedrock)

Group G sampling locations were also located within bedrock geology. This group consisted of two groundwater wells, both considered to have medium upgradient OWTS density. However, for one of these wells, it was determined that it was unlikely that the collected samples were able to be influenced by OWTS based on the screened depth in the well and confining layers (as discussed in Section 2.1.1). The other well in this group had the highest average nitrate concentration of all sampled wells (13.9 mg/L), and PPCPs were also detected (3.4 ng/L of azithromycin and 23 to 42 ng/L of sucralose).

Based on groups F and G, there was a pattern between geology and nitrate concentrations, where high nitrate concentrations were observed in wells in bedrock areas. Similar to group F, PPCPs

were detected, detected sucralose concentrations in groundwater were notably higher than those detected in wells located in alluvium, and both wells had sources considered to be animal waste and/or sewage based on the nitrate isotope results and are not likely to be influenced by sanitary sewer systems.

Therefore, it is **highly likely** based on multiple lines of evidence that groundwater in this bedrock area is influenced by OWTS. Although Group G is located in far proximity to downgradient flowing surface water locations, no septic influence vs distance relationship could be established for bedrock areas in this study. Therefore, it is unknown whether surface waters may be impacted.

4.2.8 Summary of Observations

The evaluation of sampling data by group is summarized in Table 18. The risk of surface water contamination from OWTS based on historical data is described further in Section 4.4.

Surface Water Surface water - risk level of Groundwater - under Groundwater high contamination from OWTS influence of OWTS Group - high nitrate downgradient (PPCPs and isotopes) This study¹ Historical² average nitrate \checkmark A High Low × В Low Low **√** \mathbf{C} × Low Low **√** D × Low Low Ε High High F Low × Low G Undetermined³ Undetermined³ Undetermined³

Table 18. Summary of Sampling Data Conclusions by Group

Based on the sampling data evaluation by group (Sections 4.2.1 to 4.2.6) and the summary of these results (Table 18), each of the study questions (shown in Section 1.2) was answered as follows:

1) Are groundwater nitrogen levels elevated downgradient of OWTS areas? If yes, which OWTS areas?

Nitrate in groundwater was elevated downgradient of areas with OWTS throughout the VRW. The average nitrate concentrations for all groups, except group D (low density OWTS) and the background wells, were above the TMDL allowable in-stream concentration. Group D had one of three wells above the target. The number of OWTS within a certain distance upgradient of each well was found to be significantly correlated

¹Conclusion is based on surface water quality data collected during this study

²Conclusion is based on available historical surface water quality data

³ This medium density area was distant from impaired surface waters. Further investigation is recommended to determine if downgradient surface waters could be impacted.

with groundwater nitrate concentrations in alluvial areas (r = 0.82, p < 0.00001). Nitrate was also found to be elevated where OWTS were in areas identified as bedrock geology.

2) Are these areas also impacted by sewage indicators that would further support OWTS as a source? If yes, which OWTS areas?

At least one PPCP was detected in groundwater downgradient of OWTS in each groundwater sampling group, with multiple PPCPs detected in some wells. Nitrate isotope ratios also suggested that groundwater was impacted by animal waste and/or human sewage throughout the VRW. Therefore, both chemical (PPCP) and isotope data supports OWTS effluent as a source of nitrate to groundwater in the VRW.

3) Are these impacted groundwaters impacting surface water nitrogen levels at upwelling locations? If yes, downstream of which OWTS areas?

While OWTS influence to groundwater were evident throughout the watershed, the impacts to surface waters during dry weather were not as ubiquitous. At many locations on the impaired streams, average nitrate, both historically and in this study, were below the TMDL allowable in-stream concentration for TN. During this study, the surface waters found to be elevated for nitrogen during dry weather were located downgradient of OWTS Groups A and E, near the community of Mira Monte and east of Ojai, respectively.

The analysis outlined in Section 4.3 was used to extrapolate the data from the areas investigated in this study to other impaired stream reaches and assign the risk of OWTS significantly impacting impaired surface waters.

4.2.9 General Observations

Evaluation of the sampling data resulted in two main observations. First, levels of nutrients increase with the density of upgradient OWTS. To further examine this observation, nitrate concentrations were plotted against upgradient OWTS density for samples collected at sites in alluvium or bedrock/shallow alluvium. Although it is difficult to define the upgradient areas that are potentially contributing to groundwater in the sampling wells (and thus which upgradient OWTS could be affecting water quality in the wells), it was necessary to define an "upgradient area of influence" to each well (as first referenced in Section 2.1.1). If the groundwater influence area is too small, it would not account for more distant OWTS influencing groundwater quality. On the other hand, too large of an influence area would incorrectly account for areas that have minimal influence on groundwater quality. Also, since exact groundwater flow patterns are difficult to predict at a small scale, but groundwater flow (especially in alluvial areas) approximately follows ground surface elevations, it was assumed that groundwater influence areas to a given well should only include areas upgradient (i.e., with a higher ground surface elevation than the ground surface elevation of the well).

To determine the area of OWTS influence, a range of different sized upgradient areas were defined, based on distances ranging from 600 feet to 8,000 feet ¹⁰ from the well. Correlations were then examined between nutrient concentrations in groundwater for each sample and the OWTS located within the defined areas of groundwater influence. Specifically, correlation was evaluated for both nitrate and total nitrogen, in addition to both count of OWTS and density (#/acre) within the groundwater influence area. The strongest correlation was observed for nitrate and number (count) of OWTS in the upgradient area defined with a radius of 2,000 feet centered on the well. Figure 21 shows the correlation between nitrate in groundwater and number of OWTS in the upgradient areas of influence for the various sizes of influence examined. Figure 22 shows the correlation between nitrate and number of OWTS in the upgradient area of influence (within 2,000 ft) for each groundwater sample. This plot also shows which of the groundwater results had corresponding high (>1.15 mg/L, the allowable dry weather concentration for total nitrogen that would meet Algae TMDL allowable in-stream concentrations for the receiving water) nitrate levels at the downgradient surface water location.

Therefore, it was concluded that groundwater from within this defined area of influence was significantly influencing groundwater quality at the given well. This analysis only includes data from groundwater wells located in alluvium or bedrock/shallow alluvium geology, as groundwater in bedrock areas were found to have higher levels of nitrate than in alluvium areas and a different relationship between OWTS density and nitrate concentration. However, investigation of groundwater sampling results in bedrock areas also showed the strongest correlation between nitrate and upgradient OWTS using a radius of 2,000 feet.

-

¹⁰ Includes 600 ft, 1,000 ft, 1,500 ft, 2,000 ft, 2,500 ft, 3,000 ft, 4,000 ft, 5,000 ft, 6,000 ft, 7,000 ft, and 8,000 ft.

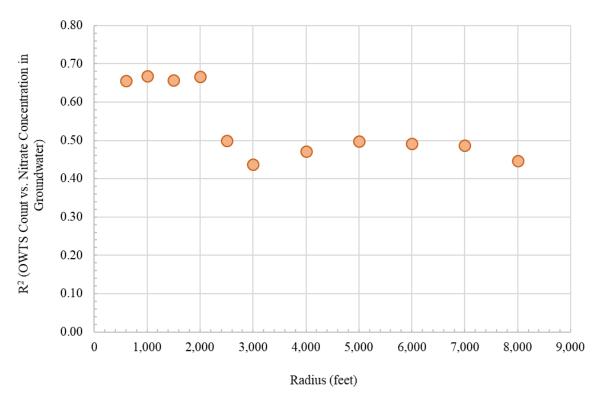


Figure 21. Correlation for Different Sizes of Upgradient Influence Areas (for nitrate in groundwater and count of OWTS)

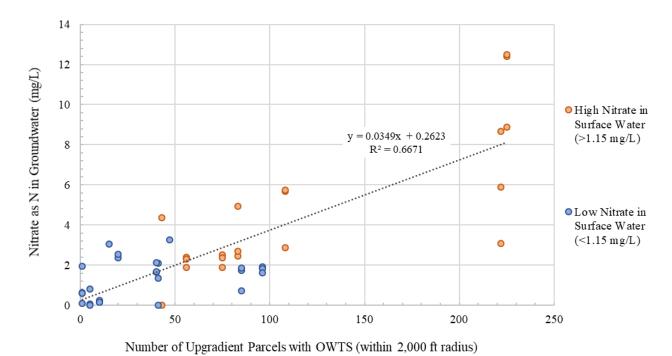
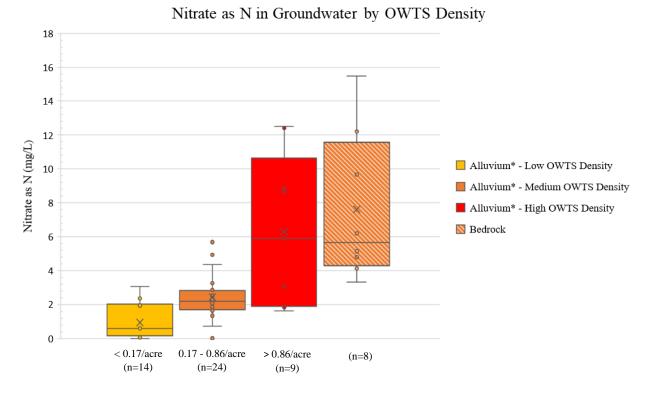


Figure 22. Nitrate vs. Number of OWTS Located in the Upgradient Groundwater Influence Area (within 2,000 ft radius) for Each Groundwater Sample

Statistical testing was performed to determine if the trend of observed nitrate concentrations increasing with OWTS density was statistically significant. The Pearson R value at 2,000 ft is 0.8167, which means there's a strong positive correlation between nitrate concentration and number of upgradient OWTS within 2,000 ft of the given well. The p-value for the Pearson R is <0.00001, which means that the correlation is statistically significant with 99.9+% confidence. Non-parametric correlations (Spearman and Kendall) were also significantly correlated.

The correlation shown in Figure 22 was used to determine low, medium, and high upgradient OWTS designations. Using the linear regression equation, it was determined that 25.4 OWTS corresponded to a nitrate concentration of 1.15 mg/L, which represents the allowable dry weather concentration for total nitrogen that would meet Algae TMDL allowable in-stream concentrations for the receiving water. Although this limit is for total nitrogen, sampling results from this study show that on average, 95 percent of total nitrogen in surface water consisted of nitrate. Therefore, the total nitrogen limit of 1.15 mg/L was assumed to be an appropriate threshold for assessing nitrate levels as well. The approximate number of OWTS corresponding to the allowable in-stream concentration was used as an upper limit to define "low" OWTS, as shown in Figure 23, such that areas with low OWTS were assumed to have nitrate levels in groundwater less than the allowable in-stream concentration. This number (i.e., count) of OWTS was converted to density (#/acre) (using the average size of the upgradient areas of influence defined for the sampled wells) in order to aid in extrapolation to the entire watershed. The upper end of the number of upgradient OWTS that were classified as medium density was based on the linear regression and a nitrate concentration of 5 mg/L, which corresponded to approximately 135.8 OWTS (and was also converted to density). Any wells with a greater number of OWTS in the upgradient area of influence were classified as high density. Table 19 summarizes the count and density of OWTS corresponding to the low, medium, and high OWTS density designations.


Table 19. OWTS Count and Density Corresponding to Density Designations

OWTS Density	Number of OWTS		OWTS Density (#/acre) ¹	
Designation	Low Range	High Range	Low Range	High Range
Low	0	25	0	0.16
Medium	26	136	0.17	0.86
High	137	_	0.87	_

¹ Calculated based on the average upgradient area of influence for sampled wells of 158.4 acres.

The boxplot in Figure 23 shows the nitrate levels for groundwater wells classified as low, medium, and high upgradient OWTS density, in addition to groundwater wells located in bedrock geology. There is a significant difference in nitrate levels in each of the three OWTS density groups, with nitrate levels increasing with increasing OWTS density. This was confirmed with t-tests performed on the nitrate levels observed for each density designation, which showed statistically significant

differences in the average nitrate concentrations for low (including background) vs. medium upgradient OWTS density (p < 0.001) and medium vs. high (p < 0.05).

^{*} Includes wells in areas classified as Bedrock/Shallow Alluvium.

Figure 23. Boxplots of Nitrate by number of OWTS Located in the Upgradient Area of Groundwater Influence (with 2,000 ft radius)

The second major observation was that nitrate levels, and the presence of PPCPs, appears to be higher in bedrock geology. As previously mentioned, groundwater moves much slower in bedrock than in alluvium (unless fractures allow for more rapid transport). Therefore, if OWTS were contributing nutrients, it would likely persist at high levels in close proximity to the OWTS. Figure 23 shows that groundwater in bedrock areas, which had upgradient OWTS densities ranging from 0.073 to 0.42 OWTS/acre (which would classify them as low to medium densities in alluvial areas), had very similar nitrate concentrations to groundwater in alluvium areas with high OWTS density.

4.3 Areas of Potential OWTS Influence

In order to identify geographic areas in the watershed where OWTS are at risk of contributing to surface water impairment, observations and analysis based on sampling data from the study (as described in the previous sections) were extrapolated to the entire VRW.

The goal of this study was to define the geographic extent of OWTS that are contributing significant nitrogen loads to the TMDL-covered reaches of the Ventura River and its tributaries, and the highest risk of contribution to surface waters was found to be where OWTS are in close proximity to these surface water reaches. Because the correlation between nitrate and OWTS density was found to be the strongest using an upgradient area of influence for the sampled wells within 2,000 feet, an area of impact was drawn around the impaired waterbodies 2,000 feet in length on either side. This represents the area where OWTS have the potential to significantly contribute to surface water impairments due to proximity to these surface waters based on the analysis conducted in this study. Within this buffer, the areas were further evaluated based on OWTS density and surface water sampling results to determine risk of surface water contamination.

A relationship between the nitrate concentration in groundwater and the density of upgradient OWTS was found, and this relationship was extrapolated to unsampled areas of the VRW by first defining the density of OWTS throughout the VRW. The strongest relationship between nitrate and upgradient OWTS for sampled wells was found for an upgradient area of influence within 2,000 feet. To calculate OWTS density, the average upgradient area for sampled wells was used to define areas of influence (of the same size) for locations throughout the VRW¹¹. The number of OWTS located within this area was then determined and the OWTS density was calculated for each location in the watershed.

As previously mentioned, the low upgradient OWTS density designation was based on the number of OWTS that would result in groundwater with the allowable dry weather concentration for nitrate that would meet Algae TMDL allowable in-stream concentrations for the receiving water (1.15 mg/L total nitrogen), based on the linear regression between nitrate in groundwater and upgradient OWTS density (shown in Figure 22). The range of OWTS within the area of influence that would result in low, medium, and high upgradient OWTS density classifications were previously determined, as shown in Table 19, and was extrapolated to the entire VRW.

Areas with low density upgradient OWTS were assumed to have a low risk of contribution to surface water impairments, since groundwater levels of nitrate are expected to be below the TMDL numeric limit for total nitrogen. Areas with medium or high density OWTS (within the 2,000 ft buffer of impaired reaches) were examined further to determine risk level to surface water contamination. Surface water sample results (both from this study and historically, as shown in Section 4.4) in close proximity and downgradient (such that groundwater quality would likely influence surface waters in upwelling areas) were examined to determine if average surface water nitrate levels were generally high (i.e., greater than 1.15 mg/L). If groundwater was identified as

¹¹ Specifically, a 100 feet by 100 feet grid throughout the watershed. The density for each grid was calculated using an area with a radius of 1,481.9 feet, which results in areas of influence equal in size to the average size of the upgradient areas of groundwater influence for all sampled wells.

being likely influenced by OWTS (based on medium or high density OWTS) but available surface water data just downstream did not suggest surface water impacts (i.e., low nitrate levels), the area was identified as "potential" risk for surface water impairment. However, if an area was identified as likely having influence from OWTS in groundwater (i.e., medium or high density OWTS), and surface water sampling results show elevated levels of nitrate, the area was identified as having high risk of surface water contamination due to OWTS.

It was observed in the study that bedrock geology areas had high nutrient levels (similar to high density OWTS in alluvial areas, as shown in Figure 23) and presence of PPCPs in groundwater. However, based on evaluation of surface water sampling results from this study, there was no evidence that these high observed nutrient levels in groundwater were contributing to high levels in nearby surface waters. Furthermore, most bedrock areas in the VRW are distant from impaired surface waters and/or have low density OWTS. Therefore, bedrock areas were not found to be contributing to surface water contamination.

To summarize, the determinations of risk levels for surface water contamination to the impaired reaches from OWTS for the entire VRW were based on the following:

- Low density OWTS (within 2,000 ft buffer of impaired reaches) or not within 2,000 ft buffer of impaired reaches = **Low** risk of surface water contamination
- Medium and high density OWTS (within 2,000 ft buffer of impaired reaches) = **high** risk or **potential** risk of surface water contamination based on downgradient surface water nitrate levels observed in the study and historically

The final result is a map of the VRW defining potential risk to surface waters as low, potential, or high. Only areas within 2,000 feet of the impaired reaches are shown on the map, as all other areas are assumed to be low risk to surface water impairment based on their far proximity to the impaired reaches.

Based on the results of this study, there are enough data to support that OWTS in the low risk areas are not likely to significantly contribute nitrate to impaired surface waters. Similarly, the results of this study support that OWTS in high risk areas are likely to influence TMDL-listed surface waters. For the areas classified as potential risk, results suggest that groundwater is likely being influenced by OWTS (based on OWTS density) and has the potential to impact surface waters, but there is not evidence of surface water impacts (based on average surface water nitrate concentrations downstream). Further investigation would be required to determine if contributions in these areas are significantly contributing to exceedances of the TMDL allowable in-stream concentration for nitrogen in surface waters. The surface water risk map for the VRW is illustrated in Figure 24.

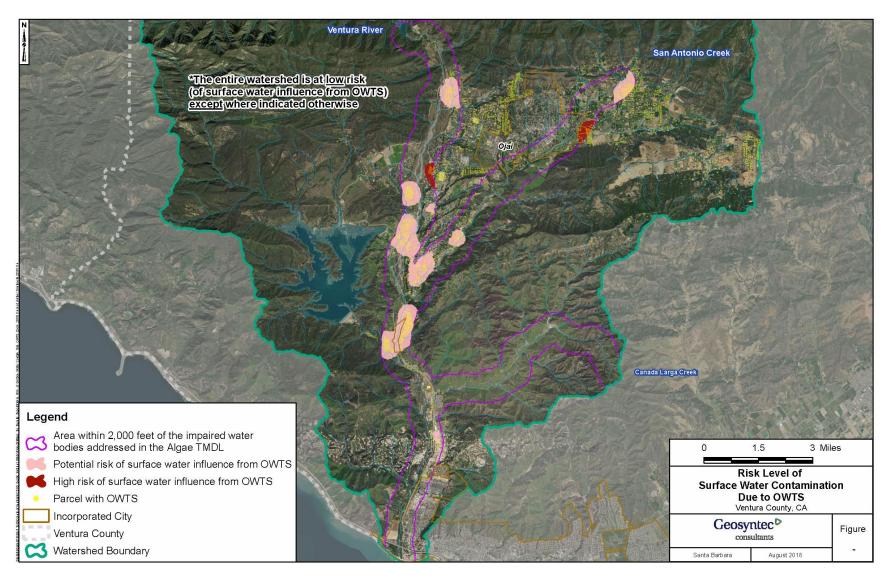


Figure 24. Risk Map: Geographic Areas where OWTS Contamination of Groundwater is Likely Contributing to Impairment of Surface Waters

4.4 Comparison to Historical Water Quality Monitoring Data

Water quality data (specifically for nitrate) were compiled from existing data sources and used to assess historical groundwater and surface water quality throughout the VRW for the purpose of determining whether the study period was representative of longer term water quality conditions and not unusual or anomalous; and evaluate other unsampled surface water or groundwater areas where nitrate is typically elevated. As discussed in the Monitoring Plan, existing surface water data were obtained from the California Environmental Data Exchange Network (CEDEN), Santa Barbara Channel Keeper (SBCK), Ojai Valley Sanitation District (OVSD), and Ventura County Watershed Protection District (VCWPD). Groundwater data were obtained from VCWPD and Groundwater Ambient Monitoring and Assessment Program (GAMA).

The characterization of historical water quality data included in the Monitoring Plan was updated to include recent data collected by the County. Surface water data from June 2000 through April 2018 were used, and groundwater data from May 2005 through December 2017 were used. The updated characterization of water quality data for groundwater and surface water are shown in Figure 25 and Figure 26, respectively. Nitrate levels in groundwater appear to be highest in the northeast portion of the VRW (near the eastern portion/northeast of Ojai). There are a significant number of OWTS and also agricultural parcels in this area. Sampling near this area in this study was limited due to availability of potential wells to sample and limited surface water flow during dry weather. This area of high historical nitrate levels is located within the Ojai Valley groundwater basin, which has a range of unconfined, semi-confined, and confined conditions (Walter, 2015). There were also high historical nitrate levels observed in the far eastern edge of the VRW. However, this area was not sampled in this study due to limited availability of sampling wells and far proximity from the TMDL-listed reaches.

Considering historical surface water quality data shown in Figure 26, concentrations of nitrate are generally higher in groundwater than in surface water and the highest concentrations were observed in San Antonio Creek just south of Ojai and at the confluence of the Ventura River with San Antonio Creek and with Cañada Larga Creek. Concentrations in San Antonio Creek in general were slightly higher than in the Ventura River. Surface waters were also high in nitrate in the upper portions of San Antonio Creek during this study, and levels were moderate at the confluence of San Antonio Creek and the Ventura River (which could be explained by the slightly higher historical concentrations noted in San Antonio Creek). The highest levels of nitrate observed in surface water for this study occurred in the Ventura River as part of Group A sampling locations. However, average historical surface water nitrate concentrations were low in this area of the Ventura River.

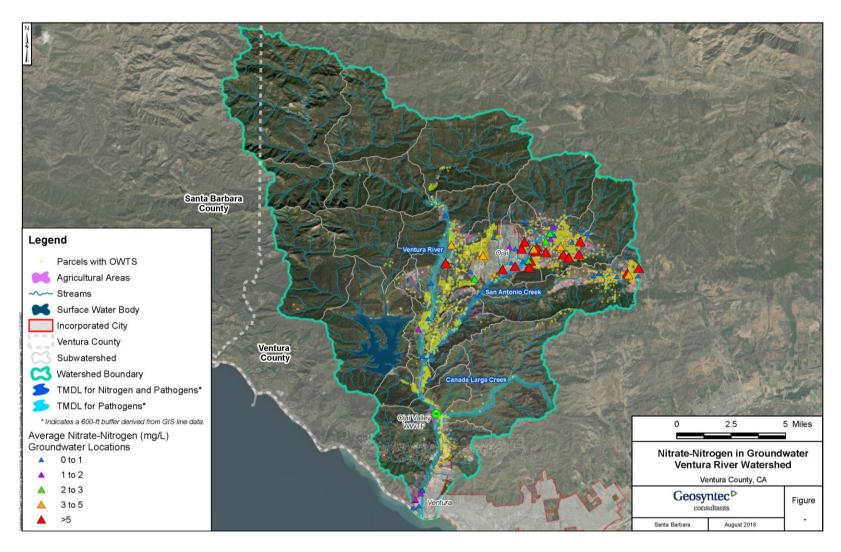


Figure 25. Historical Groundwater Quality in the VRW

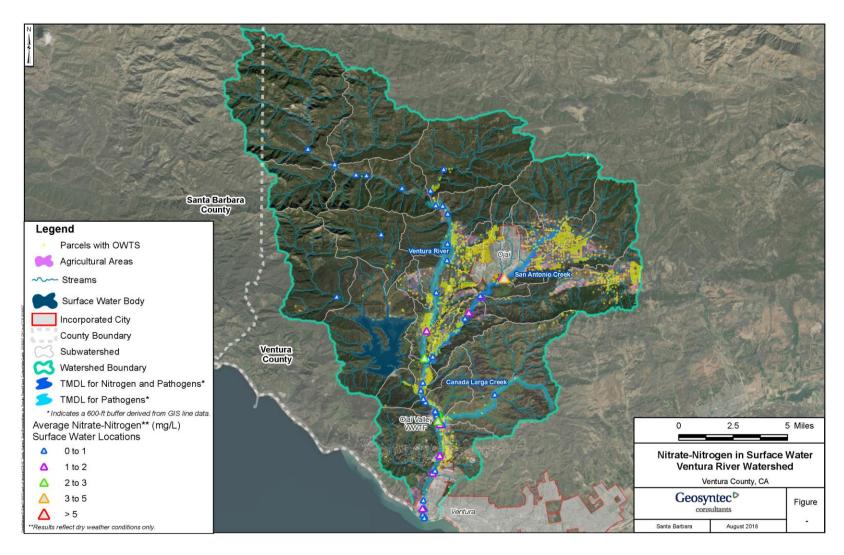


Figure 26. Historical Surface Water Quality in the VRW (Dry Weather Only)

4.5 Uncertainties

There are several sources of uncertainty related to development of the map identifying the spatial extent of high and low risks of OWTS that are contributing significant nitrogen to the Algae TMDL-covered reaches of the Ventura River and its tributaries.

First, in identifying the relationship between nitrate in groundwater (of the wells sampled in this study) and number of OWTS in the upgradient area of influence, there was uncertainty in defining the area of influence. It was assumed that groundwater flow followed the land surface gradient, so the area of influence was determined to be the upgradient area within 2,000 feet of the sampled well. This assumption for groundwater flow is likely a good approximation in alluvial areas, but may vary widely within bedrock geology. Additionally, the 2,000 foot distance was found to be the best approximation of the groundwater influence area based on the correlation with nitrate levels in groundwater. However, this radius is an approximation of the area influencing groundwater nitrate in a given well and in reality, the size of the upgradient influence area likely varies across the watershed. Therefore, the number of OWTS within the defined area of influence for each sampled well may not reflect the true number of OWTS that could be influencing water quality at the sampled well based on actual groundwater flow patterns. However, the correlation between nitrate and OWTS density was strong (and statistically significant) at the specified distance, suggesting the approximation was fairly accurate across the watershed. Because the results of this analysis are highly sensitive to the area of influence determined, it is recommended that the surface water-groundwater model for the VRW currently in development for the SWRCB and RWQCB be used to confirm or refine these approximations in the future.

When identifying OWTS density by grid cell, a circle centered on each cell was used. For these density calculations, the area of influence was not limited to only upgradient areas. Therefore, OWTS that are within this area, may be downgradient of the grid cell. These downgradient OWTS would not impact groundwater in the grid cell, but they would contribute to downgradient locations closer to surface waters. This uncertainty is not expected to have a major impact on the final risk determinations within the 2,000 foot buffer. However, it is advisable to reproduce the estimated areas of influence, verify the 2,000 foot optimal distance, and revise the nitrate vs. OWTS density correlation using the groundwater-surface water model grid, which contains cascading flow properties to allow more accurate defining of areas of influence to each well or grid cell.

Additionally, the point locations of the OWTS were determined based on the centroid of the parcel identified as having an OWTS. The exact location of the OWTS within each parcel is not known. So, especially in very large parcels, the assumed locations of the OWTS for determining upgradient OWTS density may not be accurate. The assumption results in less uncertainty in very small parcels identified as having OWTS, and most parcels with OWTS are on relatively small parcels where this assumption would be insignificant (55% of parcels with OWTS are less than one acre in size and 85% are less than five acres). Overall, this is a very minor uncertainty that has little effect on the final risk map.

Determination of the number of OWTS corresponding to medium and high density OWTS designations is also associated with some uncertainty. The difference between medium and high density (and therefore medium and high risk of groundwater contamination) utilized the linear regression of nitrate concentrations vs. upgradient OWTS in the area of influence for wells sampled in this study and was based on a nitrate concentration of 5 mg/L. This nitrate level is somewhat arbitrary but represents significant nitrate levels in groundwater. This level was not used to determine risk of surface water impacts.

Groundwater flow through bedrock geology is very unpredictable without more detailed investigation of the fractures and groundwater patterns in the area. The correlation analysis of number of upgradient OWTS vs. observed nitrate concentrations (shown in Section 4.2.9) only included data from groundwater wells located in alluvium or bedrock/shallow alluvium geology. Bedrock areas were found to have higher levels of nitrate than in alluvium areas and the relationship between OWTS density and nitrate concentration was different than in alluvium areas (i.e., same increasing trend but much different slope). A full correlation analysis in bedrock areas was not performed due to the limited data collected from bedrock areas. This was due to limited high density upgradient OWTS and groundwater wells in bedrock areas (and the further proximity between bedrocks areas and impaired reaches). Higher resolution transport studies may be warranted in these areas of the VRW to refine their risk level.

Although the purpose of this study was to assess the overall impact of OWTS throughout the watershed, and not solely the small number of failing OWTS, there are several additional sources of data that could potentially be used to help identify areas where OWTS are poorly sited or failing. These sources include OVSD (who routinely reports to VCEHD when evidence of failing OWTS is encountered in the field by workers or inspectors), reports from OWTS inspections (such as conducted when real estate changes hands) on file at VCEHD, and the Ventura County Resource Management Agency (VCRMA) website, which includes pertinent site studies for individual OWTS (such as septic system pumping inspections for existing system certifications or percolation tests included in geotechnical reports for new construction). These data sources could be used to help identify high risk OWTS or areas with high numbers of high risk OWTS but were not evaluated as part of this study.

Although impacts of the Thomas Fire were evaluated as part of this study (as discussed in Section 2.5), there are still uncertainties related to potential fire impacts. The post-fire water quality data analyzed were subject to several drivers that could have obscured high nitrate levels more characteristic of upwelling groundwater in some parts of the VRW. First, there were extended periods of continuous surface flows in the Ventura River post-fire, potentially due to sediment being deposited in the active channel bed that reduced the rate of groundwater recharge through the gravel beds and/or the loss of riparian vegetation resulted in reduced evapotranspiration. Following the single significant post-fire rain event in January, surface flows in the Ventura River did not become discontinuous until the last week of May, which is months later than would be expected after such a curtailed winter rainy season. Second, the dramatically reduced recharge

caused an atypical drop in groundwater levels in the spring along the axis of the river. Both phenomena will have affected the location and degree to which groundwater, and any accompanying anthropogenically derived nitrate, upwelled in the sampled reaches.

Finally, this study was conducted following a historic multi-year drought. Although rainfall during the 2016/2017 rainy season was close to average conditions, OWTS impacts may be different under varying conditions (e.g., after multiple years of above average rainfall, raising the groundwater table). Additionally, wet weather impacts of OWTS on surface waters were not evaluated in this study. The transport pathways for nitrate from OWTS are expected to be different in wet weather and could potentially have impacts during dry weather through mobilization of nitrate to groundwater. A follow-up investigation in wet weather would be valuable.

The groundwater-surface water model currently in development for the SWRCB and RWQCB is expected to compute groundwater gradient and velocity for every grid cell in the VRW, in addition to travel time and denitrification from each grid cell to surface water, integrating the complete groundwater and surface water nutrient datasets. Nitrate loads to surface water will be quantified and connected back to original OWTS zones, allowing this risk map to be significantly refined, therefore it would be best to consider the risk map presented herein as a preliminary map subject to refinement after completion of the groundwater surface water model.

5 REFERENCES

American Water Works Association (AWWA), 2002. *Nitrification*. Prepared for the U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water Standards and Risk Management Division. August 2002.

California Department of Water Resources (DWR), 1977. Water Well Drillers Report (No. 103653, State Well No. 04N23W33N02). July 1977.

California Department of Water Resources (DWR), 1990. Water Well Drillers Report (No. 240973, State Well No. 04N23W02M01S). April 1990.

California Regional Water Pollution Control Board, 1961. *Water Well Drillers Report* (No. 44021, State Well No. 04N22W07C05). July 1961.

Cardno ENTRIX, 2012. Ventura River Watershed Protection Plan Report. Prepared for the Ventura County Watershed Protection District. February 2012.

Daniel B. Stephens & Associates, Inc. (DBS&A), 2018. Memorandum: Geologic Analysis, Ventura River Watershed. August 2018.

Geosyntec Consultants, 2017a. Monitoring Plan for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. September 2017.

Geosyntec Consultants, 2017b. Quality Assurance Project Plan (QAPP) for the Monitoring Plan for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment System (OWTS) in the Ventura River Watershed. September 2017.

Kear, J. L., 2005. Hydrogeology of the Ojai Groundwater Basin: Storativity and Confinement, Ventura County, California. California State University, Northridge. Thesis. December 2005.

Kear, J., 2016. Memorandum: Basin Boundary Modification Ojai Valley Groundwater Basin. Prepared for the Ojai Basin Groudnwater Management Agency. March 2016.

Larry Walker Associates (LWA), 2015. Total Maximum Daily Load for Algae, Eutrophic Conditions, and Nutrients in the Ventura River and its Tributaries. Draft Implementation Plan. June 2015.

Los Angeles Region Water Quality Control Board (LARWQCB), 2012. Algae, Eutrophic Conditions, and Nutrients Total Maximum Daily Loads for Ventura River and its Tributaries. December 2012.

Schnaar, G., 2011. Ojai Basin Groundwater Model Development. November 2011.

State Water Resources Control Board (SWRCB), 2016. Statement of Opposition to Basin Boundary Modifications Requests for Upper Ventura River Groundwater Basin (4-3-01) and Ojai Valley Groundwater Basin (4-2). Letter to the California Department of Water Resources. May 2016.

Ventura County Watershed Protection District (VCWPD), 2018a. Data on wells located within the Ventura River Watershed, provided via email by Barbara Council (VCWPD) to Gregory Schnaar (DBS&A). May 1, 2018.

Ventura County Watershed Protection District (VCWPD) Ventura Countywide Stormwater Quality Management Program, 2018b. *Post Fire Stormwater Quality Monitoring*. August 2018.

Walter, L, 2015. Ventura River Watershed Management Plan. Prepared for the Ventura River Watershed Council. March 2015.

Prepared for

County of Ventura – Environmental Health Division

800 S. Victoria Avenue Ventura, California 93009-1730

Technical Report

for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment Systems (OWTS) in the Ventura River Watershed

Appendix A – Sampling Results

Prepared by

engineers | scientists | innovators

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101

Project Number LA0391

September 2018

TABLE OF CONTENTS

1 Sampling Results	A-1
LIST OF TABLES	
Table A-1. Event #1 Nutrient Sampling Results	A-1
Table A-2. Event #2 Nutrient Sampling Results	A-2
Table A-3. Event #3 Nutrient Sampling Results	A-3
Table A-4. Event #1 PPCP Sampling Results	A-4
Table A-5. Event #2 PPCP Sampling Results	
Table A-6. Event #3 PPCP Sampling Results	A-6
Table A-7. Event #1 Nitrate Isotope Ratio Sampling Results	A-7
Table A-8. Event #2 Nitrate Isotope Ratio Sampling Results	A-8
Table A-9. Event #3 Nitrate Isotope Ratio Sampling Results	

1 SAMPLING RESULTS

Samples were analyzed for nutrients by PHYSIS Environmental Laboratories, Inc.; the Institute for Integrated Research in Materials, Environments & Society (IIRMES); and Weck Laboraties, Inc. Additionally, samples were analyzed for personal and pharmaceutical care products (PPCPs) by Weck Laboratories, Inc and nitrate isotope ratios by Source Molecular. Appendix A includes lab results, in tabular format, for all groundwater and surface water sampling events. Results are organized by parameter type and sampling event.

Table A-1. Event #1 Nutrient Sampling Results

						Conce	entratio	n in mg/L			
Sample ID	Туре	Group	Site	Ammonia	a as N	Nitrate	e as N	Nitrite	as N	Tota Nitro	
				Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_170918			01	0.012	-	5.9	-	ND	-	13	-
GW-A-02_170824			02	ND	-	2.5	-	0.06	-	5.3	-
GW-A-03_170824		Α	03	ND	-	2.9	-	0.06	-	6.4	-
GW-A-04_170824			04	ND	-	2.5	1	0.06	1	5.4	-
GW-A-07_170824			07	ND	-	8.9	ı	0.06	ı	18	-
GW-B-03-170920			03	ND	-	1.6	ı	0.04	1	3.6	-
GW-B-04_170823		В	04	ND	-	1.3	ı	0.06	1	3.0	-
GW-B-05-170921			05	0.009	DNQ	3.1	ı	0.04	ı	6	-
GW-C-01_170823			01	ND	-	1.6	ı	0.06	ı	3.6	-
GW-C-04-170919			04	ND	-	3.3	-	ND	1	6.4	-
GW-C-BK-05_170825	GW	С	05	ND	-	1.9	-	0.06	-	4.4	-
GW-C-BK-06-170919	GW	C	06	2.9	-	0.6	ı	0.09	ı	4.3	-
GW-C-07-170919			07	ND	-	1.7	-	ND	1	3.7	-
GW-C-08-170919			80	ND	-	1.9	-	ND	-	3.9	-
GW-D-04-170918			04	0.009	DNQ	2.4	ı	ND	ı	5.0	-
GW-D-05-170918		D	05	5.4	-	0.2	-	ND	1	4.2	-
GW-D-07-170919			07	ND	-	0.05	ı	ND	ı	0.35	-
GW-E-03-170921		Е	03	ND	-	1.9	ı	0.04	1	3	-
GW-E-03-170921-DUP		Е	03	0.008	DNQ	1.78	1	0.04	1	4.28	-
GW-F-02_170823		F	02	ND	-	9.7	ı	0.06	ı	20	-
GW-G-01-170921		G	01	0.024	DNQ	4.14	ı	ND	1	8.24	-
GW-G-02-170920		G	02	ND	-	12	-	0.04	-	23	-
SW-03-D-170825			D/S	0.008	DNQ	0.91		0.06		2.3	-
SW-03-U-170919	SW	С	U/S	0.011	DNQ	1.3	-	ND	-	2.8	-
SW-03-D_170920-EB			D/S	0.016	DNQ	1.0	ı	0.05	1	2.3	-

Table A-2. Event #2 Nutrient Sampling Results

						Conc	entratio	n in mg/	L		
Sample ID	Туре	Group	Site	Ammoni	a as N	Nitrate	as N	Nitrite	as N	Tot Nitro	
				Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_180403			01	ND	ı	3.07	ı	ND	-	3.07	-
GW-A-02_180403			02	ND	1	4.93	ı	ND	-	4.93	-
GW-A-03_180403		A	03	ND	1	5.68	1	ND	-	5.68	-
GW-A-04_180403			04	ND	1	1.88	ı	ND	-	1.88	-
GW-A-07_180404			07	ND	-	12.4	1	ND	-	12.4	-
GW-B-03_180404			03	ND	1	2.13	1	ND	-	2.13	-
GW-B-04_180405		В	04	ND	-	ND	1	ND	-	ND	-
GW-B-04_180405-EQ			04	ND	-	2.17	1	ND	-	2.17	-
GW-C-07_180403			07	ND	1	0.72	1	ND	-	1.27	-
GW-C-BK-06_180404	GW	C	06	6.51	1	0.10	ı	ND	-	7.40	-
GW-C-08_180403			08	ND	1	1.84	ı	ND	-	1.84	-
GW-D-05_180405			05	2.82	ı	0.24	ı	ND	-	3.54	-
GW-D-05_180405-DUP		D	05	2.92	1	0.21	1	ND	-	3.51	-
GW-D-07_180404			07	ND	1	0.80	1	ND	-	0.80	-
GW-E-02_180402		Е	02	ND	-	4.37	-	ND	-	4.37	-
GW-E-03_180402		E	03	ND	1	2.40	1	ND	-	2.40	-
GW-F-02_180403		F	02	ND	1	3.32	ı	ND	-	3.32	-
GW-G-01_180406		G	01	0.06	ı	4.8	ı	ND	-	4.9	-
GW-G-02_180405		0	02	ND	1	15.5	1	ND	-	15.5	-
SW-01-D_180403		A,G	D/S	ND	-	8.76	1	ND	-	8.76	-
SW-02-D_180404		В	D/S	ND	-	0.59	1	ND	-	0.59	-
SW-02-U_180405		D	U/S	ND	1	0.45	1	ND	-	ND	-
SW-03-D_180402	SW	C,F	D/S	ND	1	1.12	1	ND	-	1.12	-
SW-03-U_180404	SW.	C	U/S	ND	1	0.90	1	ND	-	1.42	-
SW-04-D_180402		D	D/S	ND	-	1.48	1	ND	-	1.48	-
SW-04-U_180402		D,G	U/S	ND	-	1.35	-	ND	-	1.35	-
SW-05-D_180402		E,G	D/S	ND	-	1.37	-	ND	-	1.53	-

Table A-3. Event #3 Nutrient Sampling Results

						Cond	centrati	on in mg/	'L		
Sample ID	Туре	Group	Site	Ammon	ia as N	Nitrate	e as N	Nitrite	as N	Tot Nitro	
				Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_180515			01	ND	-	8.66	-	ND	-	8.66	-
GW-A-02_180515			02	0.212	-	2.70	ı	ND	ı	2.70	ı
GW-A-03_180515		Α	03	ND	-	5.73	ı	ND	ı	5.73	1
GW-A-04_180515			04	ND	-	2.37	-	ND	-	2.37	-
GW-A-07_180516			07	0.278	-	12.5	-	ND	-	12.5	-
GW-B-03_180516			03	ND	-	1.69	-	ND	-	1.69	-
GW-B-03_180516_DUP		В	03	ND	-	1.69	-	ND	-	1.69	-
GW-B-04_180516			04	ND	-	2.08	-	ND	-	2.08	-
GW-C-BK-05_180514			05	ND	-	0.60	-	ND	-	0.60	-
GW-C-BK-05_180514_EB			05	ND	-	ND	-	ND	-	ND	-
GW-C-BK-06_180517	GW	С	06	0.382	-	0.60	-	ND	-	1.70	-
GW-C-07_180515			07	ND	-	1.86	-	ND	-	1.86	-
GW-C-08_180515			08	ND	-	1.62	-	ND	-	1.62	-
GW-D-04_180517			04	ND	-	2.54	-	ND	-	2.54	-
GW-D-05_180517		D	05	2.39	-	0.16	-	ND	-	3.16	-
GW-D-07_180517			07	ND	-	ND	-	ND	-	ND	-
GW-E-02_180514		-	02	ND	-	ND	-	ND	-	ND	-
GW-E-03_180517		E	03	3.27	-	2.29	-	ND	-	10.9	-
GW-F-02_180515		F	02	ND	-	5.15	-	ND	-	5.15	-
GW-G-01_180517		(01	ND	-	6.21	-	ND	-	6.21	-
GW-G-02_180518		G	02	ND	-	-	-	-	-	15.00	-
SW-01-D_180516		A,G	D/S	ND	-	ND	-	ND	-	ND	-
SW-02-U_180516		В	U/S	ND	-	ND	-	ND	-	ND	-
SW-03-D-180514		C,F	D/S	ND	-	1.05	-	ND	-	1.05	-
SW-03-U-180516	SW	С	U/S	ND	-	1.86	-	ND	-	1.86	-
SW-04-D_180514		D	D/S	ND	-	ND	-	ND	-	ND	-
SW-04-U-180514		D,G	U/S	ND	-	3.94	-	ND	ı	3.94	-
SW-05-D_180514		E,G	D/S	ND	-	1.2	-	ND	-	1.2	-

Table A-4. Event #1 PPCP Sampling Results

											Concentra	tion in ng/L	,						
Sample ID	Type	Group	Site	Acetami	nophen	Aten	olol	Azithro	omycin	Caff	eine ^a	Carbam	azepine	Coti	nine	Primi	done	Sucra	alose
				Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_170918			01	ND	-	ND	-	ND	ı	0.77	DNQ	ND	1	ND	-	ND	-	ND	-
GW-A-02_170824			02	ND	-	ND	-	ND	ı	2.5	1	ND	1	ND	-	ND	-	5.3	-
GW-A-03_170824		A	03	ND	-	ND	-	ND	ı	1.2	1	ND	ı	ND	-	ND	-	ND	-
GW-A-04_170824			04	ND	-	ND	-	ND	ı	1.2	ВС	ND	1	ND	-	ND	-	8.1	-
GW-A-07_170824			07	ND	-	ND	-	ND	ı	1.6	1	ND	1	ND	-	ND	-	ND	-
GW-B-03-170920			03	ND	-	ND	-	4.5	DNQ	1.1	ВС	ND	-	ND	-	ND	-	ND	-
GW-B-04_170823		В	04	ND	-	ND	-	ND	1	5.6	ВС	ND	ı	ND	-	ND	-	6.4	-
GW-B-05-170921			05	ND	-	ND	-	ND	1	0.74	DNQ	ND	ı	ND	-	ND	-	9.3	-
GW-C-01_170823			01	ND	-	ND	-	ND	ı	2.2	-	ND	-	ND	-	ND	-	ND	-
GW-C-04-170919			04	ND	-	ND	-	6.1	DNQ	1.6	ВС	ND	ı	ND	-	ND	-	18	-
GW-C-BK-05_170825	GW	C	05	ND	-	ND	-	ND	1	2.5	1	ND	ı	ND	-	ND	-	ND	ı
GW-C-BK-06-170919	GW	C	06	ND	-	ND	-	ND	-	1.2	-	ND	-	ND	-	ND	-	ND	-
GW-C-07-170919			07	ND	-	ND	-	ND	1	0.73	DNQ	ND	ı	ND	-	ND	-	ND	-
GW-C-08-170919			08	ND	-	ND	-	ND	1	3.4	ВС	ND	ı	ND	-	ND	-	ND	-
GW-D-04-170918			04	ND	-	ND	-	ND	ı	0.76	DNQ	ND	-	ND	-	ND	-	ND	-
GW-D-05-170918		D	05	ND	-	ND	-	ND	1	4.7	ı	ND	1	ND	-	ND	-	ND	-
GW-D-07-170919			07	ND	-	ND	-	ND	1	0.94	DNQ	ND	-	ND	-	ND	-	ND	-
GW-E-03-170921		Е	03	ND	-	ND	-	ND	ı	2.4	ВС	ND	-	ND	-	ND	-	ND	-
GW-E-03-170921-DUP		E	03	ND	-	ND	-	ND	ı	1.2	ВС	ND	ı	ND	-	ND	-	ND	-
GW-F-02_170823		F	02	ND	-	ND	-	ND	1	59	-	ND	-	ND	-	ND	-	32	-
GW-G-01-170921		G	01	ND	-	ND	-	3.9	DNQ	0.64	DNQ	ND	-	ND	-	ND	-	ND	-
GW-G-02-170920		U	02	ND	-	ND	-	ND	-	0.81	DNQ	ND	-	ND	-	ND	-	23	-
SW-03-D-170825			D/S	ND	-	ND	-	5.8	DNQ	2.6	-	ND	-	ND	-	ND	-	ND	-
SW-03-U-170919	SW	C	U/S	ND	-	ND	-	ND	-	5.6	ВС	ND	-	ND	-	ND	-	ND	-
SW-03-D_170920-EB			D/S	ND	-	ND	-	ND	-	39	ВС	ND	-	ND	-	ND	-	ND	-

^aCaffeine data was not used in analyses due to significant lab and field blank contamination

Table A-5. Event #2 PPCP Sampling Results

					Concentration in ng/L														
Sample ID	Type	Group	Site	Acetami	Acetaminophen Atenolol			Azithro	mycin	Caffe	eine ^a	Carbam	azepine	Coti	inine	Prim	idone	Sucra	alose
				Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_180403			01	ND	-	ND	-	ND	-	0.7	DNQ	ND	-	ND	-	ND	-	ND	-
GW-A-02_180403			02	ND	-	ND	-	ND	-	1.3	-	ND	-	ND	-	ND	-	7.6	-
GW-A-03_180403		A	03	ND	-	ND	-	ND	-	0.9	DNQ	ND	-	ND	-	ND	ı	ND	-
GW-A-04_180403			04	ND	-	ND	-	ND	-	0.9	DNQ	ND	-	ND	-	ND	-	ND	-
GW-A-07_180404			07	ND	-	ND	-	ND	-	1.7	-	ND	-	ND	-	ND	-	ND	-
GW-B-03_180404			03	ND	-	ND	-	ND	-	1.6	-	ND	-	ND	-	ND	ı	ND	-
GW-B-04_180405		В	04	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	5.8	-
GW-B-04_180405-EQ			04	ND	-	ND	-	ND	-	16	-	0.25	DNQ	ND	-	ND	-	ND	-
GW-C-07_180403			07	ND	-	ND	-	ND	-	1.4	-	ND	-	ND	-	ND	ı	ND	-
GW-C-BK-06_180404	GW	C	06	ND	-	ND	-	ND	-	1.8	-	0.3	DNQ	ND	-	ND	-	ND	-
GW-C-08_180403			08	ND	-	ND	-	ND	-	2.4	-	ND	-	ND	-	ND	-	ND	-
GW-D-05_180405			05	ND	-	ND	-	ND	-	1.5	-	ND	-	ND	-	ND	ı	7.2	-
GW-D-05_180405-DUP		D	05	ND	-	ND	-	5.1	-	ND	-	ND	-	ND	-	ND	-	ND	-
GW-D-07_180404			07	ND	-	ND	-	ND	-	1.0	-	ND	-	ND	-	ND	-	ND	-
GW-E-02_180402		Е	02	ND	-	ND	-	ND	-	2.3	-	ND	-	ND	-	ND	ı	ND	-
GW-E-03_180402		E	03	ND	-	ND	-	ND	-	1.1	-	ND	-	ND	-	2.1	-	ND	-
GW-F-02_180403		F	02	ND	-	ND	-	ND	-	1.9	-	ND	-	ND	-	ND	-	ND	-
GW-G-01_180406		G	01	ND	-	ND	-	ND	-	0.44	DNQ	0.29	DNQ	ND	-	ND	ı	ND	-
GW-G-02_180405		U	02	ND	-	ND	-	3.4	-	0.46	DNQ	ND	-	ND	-	ND	-	42	-
SW-01-D_180403		A,G	D/S	ND	-	ND	-	ND	-	12	-	ND	-	0.71	DNQ	ND	-	ND	-
SW-02-D_180404		В	D/S	ND	-	ND	-	ND	-	18	-	ND	-	0.62	DNQ	ND	ı	ND	-
SW-02-U_180405		Б	U/S	ND	-	ND	-	ND	-	17	-	ND	-	0.88	DNQ	ND	-	ND	-
SW-03-D_180402	SW	C,F	D/S	ND	-	ND	-	ND	-	11	-	ND	-	0.75	DNQ	ND	-	ND	-
SW-03-U_180404	S W	C	U/S	ND	-	ND	-	ND	-	10	-	ND	-	0.66	DNQ	ND	ı	ND	-
SW-04-D_180402		D	D/S	ND	-	ND	-	ND	-	12	-	ND	-	ND	-	ND	-	ND	-
SW-04-U_180402		D,G	U/S	ND	-	ND	-	ND	-	14	-	ND	-	ND	-	ND	-	ND	-
SW-05-D_180402		E,G	D/S	ND	-	ND	-	ND	-	14	-	ND	-	0.65	DNQ	ND	-	ND	-

^a Caffeine data was not used in analyses due to significant lab and field blank contamination

Table A-6. Event #3 PPCP Sampling Results

											Concentrat	tion in ng/L	,						
Sample ID	Type	Group	Site	Acetami	inophen	Aten	olol	Azithre	omycin	Caff	eine ^a	Carban	azepine	Coti	nine	Primi	done	Sucra	alose
				Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
GW-A-01_180515			01	ND	-	ND	-	2.9	DNQ	0.7	DNQ	ND	-	ND	-	ND	-	ND	-
GW-A-02_180515			02	ND	-	ND	-	4.9	DNQ	0.93	DNQ	ND	-	ND	-	ND	-	ND	-
GW-A-03_180515		A	03	ND	-	ND	-	6.9	DNQ	2.4	-	ND	-	ND	-	ND	-	ND	-
GW-A-04_180515			04	ND	-	1.0	DNQ	4.1	DNQ	0.8	DNQ	ND	-	ND	-	ND	-	ND	-
GW-A-07_180516			07	ND	-	ND	-	3.3	DNQ	36.0	ВС	ND	-	ND	-	ND	-	ND	_
GW-B-03_180516			03	ND	-	0.4	DNQ	3.0	DNQ	1.8	DNQ	ND	-	ND	-	ND	-	ND	-
GW-B-03_180516_DUP		В	03	ND	-	ND	-	2.5	DNQ	0.5	ВС	ND	-	ND	-	ND	-	ND	-
GW-B-04_180516			04	ND	-	ND	-	3.7	DNQ	2.6	ВС	ND	-	ND	-	ND	-	6.8	_
GW-C-BK-05_180514			05	ND	-	ND	-	4.6	DNQ	1.8	DNQ	ND	-	ND	-	ND	-	ND	-
GW-C-BK-05_180514_EB			05	ND	-	ND	-	ND	-	32.0	DNQ	ND	-	0.6	DNQ	ND	-	ND	-
GW-C-BK-06_180517	GW	C	06	ND	-	ND	-	2.3	DNQ	1.4	ВС	0.1	DNQ	ND	-	ND	-	ND	-
GW-C-07_180515			07	ND	-	ND	-	2.5	DNQ	3.2	DNQ	ND	-	ND	-	ND	-	ND	_
GW-C-08_180515			08	ND	-	ND	-	5.6	DNQ	2.0	DNQ	ND	-	ND	-	ND	-	ND	-
GW-D-04_180517			04	ND	-	ND	-	2.2	DNQ	2.9	ВС	ND	-	ND	-	ND	-	ND	-
GW-D-05_180517		D	05	ND	-	ND	-	2.4	-	2.8	BC	ND	-	ND	-	ND	-	ND	-
GW-D-07_180517			07	ND	-	ND	-	2.8	DNQ	1.3	ВС	0.1	DNQ	ND	-	ND	-	ND	_
GW-E-02_180514		Е	02	ND	-	1.3	BC	3.3	DNQ	0.66	DNQ	ND	-	ND	-	ND	-	ND	-
GW-E-03_180517		E	03	ND	-	ND	-	9.6	DNQ	1.1	BC	ND	-	ND	-	ND	-	6.5	-
GW-F-02_180515		F	02	ND	-	ND	-	ND	-	1.3	-	ND	-	ND	-	ND	-	ND	_
GW-G-01_180517		G	01	ND	-	ND	-	2.9	DNQ	1.3	ВС	ND	-	ND	-	ND	-	ND	-
GW-G-02_180518		U	02	ND	-	ND	-	6.9	DNQ	1.1	BC	0.1	DNQ	ND	-	ND	-	36.0	-
SW-01-D_180516		A,G	D/S	ND	-	ND	-	2.6	DNQ	20	ВС	0.18	DNQ	0.8	DNQ	ND	-	ND	-
SW-02-U_180516		В	U/S	ND	-	ND	-	2.8	DNQ	75	-	0.22	DNQ	0.8	DNQ	ND	-	ND	-
SW-03-D-180514		C,F	D/S	ND	-	ND	-	8.2	DNQ	3.4	-	ND	-	0.7	DNQ	ND	-	ND	-
SW-03-U-180516	SW	C	U/S	ND	-	ND	-	3.1	DNQ	3.9	ВС	ND	1	ND	1	ND	-	ND	-
SW-04-D_180514		D	D/S	ND	-	ND	-	3.3	DNQ	3.5	-	ND	1	ND	1	ND	-	ND	-
SW-04-U-180514		D,G	U/S	ND	-	ND	-	ND	-	4.6	-	ND	ı	ND	-	ND	-	ND	
SW-05-D_180514		E,G	D/S	ND	-	ND	-	2.6	DNQ	6	-	ND	-	0.9	DNQ	0.8	DNQ	ND	-

^aCaffeine data was not used in analyses due to significant lab and field blank contamination

Table A-7. Event #1 Nitrate Isotope Ratio Sampling Results

G I ID	T.	G	G*4	Result	s in ‰		
Sample ID	Type	Group	Site	δ^{15} N-NO ₃	δ^{18} O-NO ₃		
GW-A-01_170918			01	7.23	3.61		
GW-A-02_170824			02	5.63	3.61		
GW-A-03_170824		A	03	5.87	3.24		
GW-A-04_170824			04	5.66	3.75		
GW-A-07_170824			07	7.54	3.65		
GW-B-03_170920			03	6.15	3.85		
GW-B-04_170823		В	04	6.15	3.76		
GW-B-05_170921			05	7	4.43		
GW-C-01_170823			01	11.38	6.36		
GW-C-04_170919			04	12.08	7.4		
GW-C-07_170919	GW		07	10.71	6.18		
GW-C-08_170919		C		10.94	6.12		
GW-C-BK-05_170825			05	10.76	6.43		
GW-C-BK-05_170825-EB			05	Low Nitrate	Low Nitrate		
GW-C-BK-06_170919			06	17.5	12.37		
GW-D-04_170918			04	11.81	7.1		
GW-D-05_170918		D	05	2.98	2.05		
GW-D-07_170919			07	Low Nitrate	Low Nitrate		
GW-E-03_170921		Е	03	7.64	8.01		
GW-F-02_170823		F	02	8.61	7.49		
GW-G-01_170921		G	01	7.24	8.63		
GW-G-02_170920		U	02	11.32	4.41		
SW-03-D_170825			D/S	15.08	9.07		
SW-03-D_170920	SW	C	D/S	16.27	9.83		
SW-03-U_170919			U/S	11.1	7.1		

Table A-8. Event #2 Nitrate Isotope Ratio Sampling Results

				Result	ts in ‰		
Sample ID	Туре	Group	Site	δ ¹⁵ N-NO ₃	δ ¹⁸ O-NO ₃		
GW-A-01_180403			01	7.29	3.71		
GW-A-02_180403			02	6.12	3.46		
GW-A-03_180403		Α	03	6.88	3.46		
GW-A-04_180403			04	5.92	3.81		
GW-A-07_180404			07	7.67	3.59		
GW-B-03_180404		В	03	5.81	2.93		
GW-B-04_180405		ט	04	6.26	2.93		
GW-C-07_180403			07	9.01	4.33		
GW-C-08_180403	GW	С	08	8.39	4.18		
GW-C-BK-06_180404			BK	Low Nitrate	Low Nitrate		
GW-D-05_180405		D	05	10.3	7.98		
GW-D-07_180404		D	07	11.22	6.64		
GW-E-02_180402		Е	02	7.79	8.53		
GW-E-03_180402		L	03	7.21	6.93		
GW-F-02_180403		F	02	8.88	7.49		
GW-G-01_180406		G	01	7.27	8.22		
GW-G-02_180405		0	02	10.78	3.29		
SW-01-D_180403		A,G	D/S	2.59	0.86		
SW-02-D_180404		В	D/S	3.45	1.81		
SW-02-u_180405		Б	U/S	4.73	3.45		
SW-03-D_180402	SW	C,F	D/S	5.93	3.06		
SW-03-u_180404	SW	С	U/S	6.83	3.61		
SW-04-D_180402		D	D/S	11.98	7.27		
SW-04-u_180402		D,G	U/S	10.41	6.98		
SW-05-D_180402		E,G	D/S	7.71	5.88		

Table A-9. Event #3 Nitrate Isotope Ratio Sampling Results

Constallation		0	C'I	Result	s in ‰
Sample ID	Туре	Group	Site	δ ¹⁵ N-NO ₃	δ ¹⁸ O-NO ₃
GW-A-01_180515			01	7.35	3.44
GW-A-02_180515			02	5.85	3.8
GW-A-03_180515		Α	03	6.93	3.47
GW-A-04_180515			04	5.65	3.55
GW-A-07_180516			07	7.73	3.93
GW-B-03_180516		В	03	5.39	2.19
GW-B-04_180516		Ь	04	6.35	2.93
GW-C-BK-05_180514			05	8.96	4.86
GW-C-BK-06_180517		С	06	8.91	4.57
GW-C-07_180515	GW	C	07	9.68	5.26
GW-C-08_180515			08	22.68	13.05
GW-D-04_180517			04	9.32	3.43
GW-D-05_180517		D	05	0.66	2.88
GW-D-07_180517			07	9.95	-0.05
GW-E-02_180514		Е	02	7.89	8.71
GW-E-03_180517		ı	03	6.23	5.14
GW-F-02_180515		F	02	8.38	6.91
GW-G-01_180517		G	01	7.38	8.51
GW-G-02_180518		כ	02	10.86	3.38
SW-01-D_180516		A,G	D/S	Low Nitrate	Low Nitrate
SW-02-u_180516		В	U/S	Low Nitrate	Low Nitrate
SW-03-D_180514		C,F	D/S	8.92	5.06
SW-03-u_180516	SW	С	U/S	7.84	4.13
SW-04-D_180514		D	D/S	Low Nitrate	Low Nitrate
SW-04-u_180514		D,G	U/S	Low Nitrate	Low Nitrate
SW-05-D_180514		E,G	D/S	22.29	13.72

Prepared for

County of Ventura – Environmental Health Division

800 S. Victoria Avenue Ventura, California 93009-1730

Technical Report

for the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment Systems (OWTS) in the Ventura River Watershed

Appendix B – Field Forms and Photos

Prepared by

engineers | scientists | innovators

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101

Project Number LA0391

September 2018

TABLE OF CONTENTS

1

Groundwater Field Forms B-1

Surface Water Field Forms B-55
Field PhotosB-91
TABLE OF FIGURES
TABLE OF FIGURES
re A-1. Groundwater Sampling Well GW-A-01
re A-2. Groundwater Sampling Well GW-A-02
re A-3. Groundwater Sampling Well GW-A-03
re A-4. Groundwater Sampling Well GW-A-05
re A-5. Groundwater Sampling Well GW-A-07
re A-6. Groundwater Sampling Well GW-B-01A-94
re A-7. Groundwater Sampling Well GW-B-03
re A-8. Groundwater Sampling Well GW-B-04A-96
re A-9. Groundwater Sampling Well GW-D-04
re A-10. Groundwater Sampling Well GW-D-05
re A-11. Groundwater Sampling Well GW-D-07
re A-12. Groundwater Sampling Well GW-F-02
re A-13. Groundwater Sampling Well GW-G-02
re A-14. Surface Water Sampling Location SW-03-D

GROUNDWATER SAMPLING - PURGE & SAMPLE FIELD FORM 409 OLD BALDWIN ROAD

PARAMETER TAKEN

8.05

8.00

DÔ

8800 1564 7.40 0944

17600 15.66 \$7.46 0.942

COLLECTED

1040

1048

1052

0011

100

1100

SAMPLE

Location: Project Na Sample ID	me: VCEt	IDONTS//	SCHAR		Date: 8	2. WILY <u>1241 1</u> Matrix:				SAMPLING INFORMATION: Sample Method: PVIGE Dedicated: (Y) / N
PURGE Purge Met Time Initia Initial Wat Level Refe GW Eleva Well Total	hod: GTA ated: 102 ter Level: erenced T tion: —	10 51.00 0: TOC	'UNP C		One Ca Total V Well P	nlet Dept using Vol Vol. Purg urged to	ed: 1770 Dryness:	600 GAL	<u> </u>	Water Level at Sampling: 65.38 Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations:
Well Depth (f	Wat) Leve	nter P	i Ra	Well adius (ft	Time (Complete	d: 1110 Covert fee to gallons 7.48	et One C	Casing (gal)	INSTRUMENT DATA: Meter Type: \(\frac{\fr
Time	Purge Rate (GPA)	Total Volume Removed	Temp. (°C)	pН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	SAMPLE COLLECTION DATA: Laboratory: Trip Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pН	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

General Comments and Observations:

Geosyntec consultants

40	9 OLD BA	SDHIM	ROAD			
Location: VR	WD WELL	#3		Staff: RW Date: 8124	ILYON	
Project Name	V CEMD	OWTS/	ALGAETME	Date: 8124	113	
Sample ID:	GW-A-03-	-17082	4	Sample Matri	x: H20	
		-				¥:
PURGE II						
Purge Metho		- PUM	PORS	Dedicated:	W V	
Time Initiate	d: 1006			Pump Inlet D		
Initial Water	Level: - M	OT COW	ECTED	One Casing	Vol.:	
Level Refere	nced To: 10	C (SAN	PLE POPP)	Total Vol. Po	urged: 5500	GAL
GW Elevation					to Dryness:	Y / (N)
Well Total D					fter Purge: 🗲	8,25
Casing Diam				Time Compl	eted: L0133	
Cuing Diam	C.C			ime comp.	عدمال	•
Well	Water	Pi	Well	Well	Covert feet	One Casing
Depth (ft)	Level (ft)		Radius (ft)	Radius (ft)	to gallons	Vol (gal)
(-) '	* 3.14 *		*	* 7.48 =	•

TOT	T	GE	\mathbf{T}	A 7	" A _
	III NC	K P		28.	

Time	Purge Rate (GPm)	Total Volume Removed GLAL	Temp, (°C)	pН	Conduct, (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
1007	340		- N	DP/	PRAM	E 161	TOK	SV —	1
1012	370	1950	1580	738	0.920		9.09	3	
1017	370	3700	15.68	7.35	0918		996	1	
1022	370	5550	1584	7.36	0921		10.23	1	
	9	SAMP	ιε	0	1761	'EDE	102	5-	
-									

Sample Method: Water Level at S	PURGE				
Water Level at S	1 60			Dedicated:	/Y// N
	ampling: 🤝 🔊 🗸	25			
Pump Parameters	s:				/
Refill Tin	ne (sec):	Di	ischarge Ti	me (sec): 🏒	
Pressure	Setting (psi):	Ot	hers ():/	
Sample Characte	ristics: NO OD	OR, CLEAR		588	
Comment and Ol	servations: H1	GH NITRA	TES, SCH	EPULED FO	r destruction
DESTRUCTION	ACCORPINE	, TO GEME	ral M	intiger be	RT
Meter Type: <u>YS</u> Calibration Date: Calibration:	PH: Conductivity:	1,409	= 4.0	15 100 6 on By: 12 10 9 1/mS/cm	
Laboratory:	LLLCIIO	· DAIA.			
Trip Blank Date:		Field	Blank Da	te:	

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pН	2	± 0.2 standard units
- Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec consultants

4000	12 ISPACION	110 km	٠.			,		
Location: VRWD	WELLH			Staff:	R. WIC	.8d~		
Project Name: VLE	HD OWTS!	Date: %	,241	7				
Sample ID: GW						4120		
PURGE INFO Purge Method: No Time Initiated: 1 Initial Water Leve Level Referenced GW Elevation: 1 Well Total Depth: Casing Diameter:	CMPL PUN 10 1: 63.75 To: TOC	- ope	RATION	Pump I One Ca Total V Well P GW L	nlet Dep asing Vo Vol. Purg Purged to evel Afte	oth:	2822	
Well W	ater F	i	Well	We	11 (Covert fee	t One C	asing
Depth (ft) Lev	el (ft)		adius (fl)	1 1 - 1				
() * 3.:	14 *		*	*	7.48	=	
PURGE DATA	λ:							
Purge Time Rate	Total Volume	Temp.	рН	Conduct,	TDS	DO	Turbidity	ORP

Time	Purge Rate (4PM)	Total Volume Removed GAL	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
1112	punp	PPIM	N6 -	-7M	INUTE;				
1119	150	- No	PARA	METE	R TAT	Len -			7
1125	250	5100	15.39	7.50	0937		795	0	1
1128	450	7650	15.32	7.50	0.933		9.64	t	
1133	450	11,900	1533	7.49	0,935		4.20	0	
1136	ब रु०	14,450	(548	7.47	0935	1	0 200r	0	X 2 2
	SAM	re ce	uec	CED	II TA	:40 -			
								-	

SAMPLING INFORMATION Sample Method: \[\(\frac{\partial \text{VVGE}}{\text{Solution}} \) Water Level at Sampling: \[\frac{\sqrt{Solution}}{\text{Pump Parameters:}} \] Refill Time (sec):	<u> </u>	Dedicated: (N
Pressure Setting (psi):	CLEAR	
Comment and Observations: CLOSE	TO NEIGHBOT	eing septic tanks
//		
INSTRUMENT DATA: Meter Type: YSI 556	Serial #:	15M100686
Calibration Date: 5.2412	Calibrati	on By: 🛂
	0 std. = 40	
Conductivity: A		MS/cm
	100	
SAMPLE COLLECTION DA	AIA:	
Laboratory:	ELUDI L D	
Trip Blank Date:	_ Field Blank Da	te:
GENERAL INFORMATION	.	
Weather Conditions at Time of Samp		
General Comments and Observations		EPLESENVATIVE OF
WATER QUALITY DUE TO	SAMPLING	FROM PORT
INTED DUCING NEWADNOST		
Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pН	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec [©]	
consultants	

						•				
Location: Project Na	147 F	EHD OW	S/ALU	PE TNP	Staff: __ Date: _	F-WIL	50N 17	<u> </u>		
Sample ID	: GW-A	-07_17	0824		Sample	Matrix:	H20			SAMPLING INFORMATION:
PURGE Purge Met Time Initial Initial Wat Level Refe GW Eleva Well Total Casing Dia Well Depth (fi	hod: VU ated: On ter Level: erenced T tion: Depth: ameter: Wa	vp 0164	TION R	Well	One Co	nlet Deprinsing Vol. Purgeturged to evel After Complete	l.: <u>-</u>	O GAPL Y / I	Casing	Sample Method: PULLE Dedicated: Y/N Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: CLEAR, NO OPOR Comment and Observations: INSTRUMENT DATA: Meter Type: V51 556 Calibration Date: \$/24/17 Calibration By: PRI Calibration: PH: 4.0 std. = 4.0
							1.40			Conductivity: 4.49 mS/cm = 1.409 mS/cm
PURGE	DATA									SAMPLE COLLECTION DATA:
Time	Purge Rate	Total Volume	Temp.	pН	Conduct, (nS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	Laboratory: Field Blank Date:
	CALIM	Removed GAL	×							GENERAL INFORMATION: Weather Conditions at Time of Sampling:
0912			14.10	7.23	0998	1	9.90	3		General Comments and Observations: HIGH FLOW RATE, SAMPLES COLECTE AFTER PUMP TURNED OFF (3-/ PUMP CYCLE)
0916	400	400	15A5	7,30	6,990		9.85	3	Ī	Field Measurement Replicates Acceptance Limits
	SAI	MLE	10	15	17D	AT	Bare	J		Temperature 2 ± 0.5° C

Field Measurement	Replicates	Acceptance Limits		
Temperature	2	± 0.5° C		
pH	2	± 0.2 standard units		
Turbidity	2	± 5%		
Specific Conductivity	2	± 5 %		
Dissolved Oxygen	2	± 6 %		
Total Dissolved Solids	2	± 10%		
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$		

Geosyntec[>]

consultants

Location: Project Na Sample ID	673 me: ALC GN-	SANTA AETMI B-04	ANA B	LVD 8:23	Staff: PNUSON Date: 3/23/17 Sample Matrix: WATER				
PURGE Purge Met Time Initial Initial Wat Level Refe GW Eleva Well Total Casing Die	hod: Lovel: er Level: erenced T tion:	7 FLOW 30 26.37 0: 106	4	Dedicated: Pump Inlet Depth: 49' BIOC One Casing Vol.: 191.4 Total Vol. Purged: 22 L Well Purged to Dryness: Y / ® GW Level After Purge: 26.37 Time Completed:					
Well Depth (fi	-263	I (ft) >7) * 3.1	Ra	We Radiu		Covert fee to gallons 7.48	Vol.	Casing (gal)	
Time	Purge Rate (500)	Total Volume Removed	Temp. (°C)	pН	Conduct. (nS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)

Time	Purge Rate (500)	Total Volume Removed	Temp.	рН	Conduct. (nS/cm)	TI (pp		DO (mg/L)	Turbidity (NTU)	ORP (mV)
1202	500	7.5	15.49	741	0965	1		6.14	2.94	-5.7
1203	590	8.0	16.10	7.38	0A69			6.09	3.14	-2.3
1204	500	8.5	16.10	7.37	0969			5.97	3.24	ds 10
1213	500	13.6	1610	7.37	0969			6.13	2.91	6.6
1217	500	15.0	16.18	7.35	0.970			5PA	2.61	
1221	560	17.0	16.27	7.33	0.972			5.89	1.97	20.3
1224	500	18.5	16.27	7.32	0.972			5.83	1.87	25.5
1228	500	20.5	16.32				u -	5.64	1.79	18.7
1231	500	21.0	- 65	7.31	0.974		_	5.75	1.40	32.7

SAMPLING INFORMATION:
Sample Method: 100 + 100 Dedicated: Y / N
Water Level at Sampling: 26,37
Pump Parameters:
Refill Time (sec): Discharge Time (sec):
Pressure Setting (psi): Others ():
Sample Characteristics: () (ODO PLESS
Comment and Observations:
INSTRUMENT DATA: Meter Type: \(\frac{15}{5} \) Serial #: \(\frac{5}{5} \) Calibration By: \(\frac{15}{5} \) Calibration: PH: 4.0 std. = \(\frac{1}{5} \) mS/cm
SAMPLE COLLECTION DATA: Laboratory:
Trip Blank Date: Field Blank Date:
GENERAL INFORMATION: Weather Conditions at Time of Sampling:
General Comments and Observations:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec consultants

Pro Sas PU	oject Naj mple ID URGE	Gw-	ANCH YES	17082 N:	323	Date: Sample	8/23 Matrix:	νω _	N		SAMPLING INFORMATION: Sample Method: PULLE Dedicated: Water Level at Sampling: Pump Parameters:
				7 0							Refill Time (sec): Discharge Time (sec): Pressure Setting (psi): Others ():
Ini Le GV We Ca	Time Initiated: 1435 Initial Water Level: Level Referenced To: GW Elevation: Well Total Depth: Casing Diameter: Well Water Pi Well Well Covert feet One Casing Depth (ft) Level (ft) Radius (ft) Radius (ft) to gallons Y / N Well Covert feet One Casing Vol.: Total Vol. Purged: Well Purged to Dryness: Time Completed: Well Covert feet One Casing Vol (gal) Y / N Radius (ft) Radius (ft) to gallons Y / N Well Covert feet One Casing Vol (gal) Y / N Well Covert feet Vol (gal) Y / N Time Completed: Time Completed: Y / N Time Completed: Time Covert feet One Casing Vol (gal) Y / N						asing Vol. Purged to evel Afte Complete	Sample Characteristics: CLEAN, OWALES Comment and Observations: INSTRUMENT DATA: Meter Type: 40 std. = 10 calibration By: PH: 4.0 std. = 10			
PI	URGE	DATA	:					r			SAMPLE COLLECTION DATA:
	Time	Purge Rate	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	Laboratory:
11.0						I			1 - 10		Cellerer Additional and Accel Additions:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec^o

consultants

Location:				Staff: KW - KL				
Project Name	: VCEHD or	TS/AU	JUST TIMPL	Date: 4/25/17				
Sample ID:	nW-C-Bk	(-05-	170825	Sample Matrix: H20				
PURGE II				Dedicated:	y (N) (RL)		
Time Initiate						49 74		
Initial Water		26		One Casing Vol.: Total Vol. Purged: 32.5				
Level Refere								
GW Elevation		00		Well Purged to Dryness: Y / (N)				
		7.0						
Well Total D		. 75		GW Level After Purge: 76-33				
Casing Diam	eter: <u>8</u>			Time Compl	eted: 1044			
311-11	777-4	D: 1	377.41	337.41	Course fort	One Casina		
Well	Water	Pi	Well	Well	Covert feet	One Casing		
Depth (ft)	Level (ft)		Radius (ft)	Radius (ft)	to gallons	Vol (gal)		
(-)	* 3.14 *		*	* 7.48 =			

PURGE DATA:

Time	Purge Rate (4/m)	Total Volume Removed	Temp. (°C)	pН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
1007	2.5	_	NO	PAPI	MET	FR 1	AKE	\sim $-$	
1012	25	125	15.59	720	1.003	100 W	3.23	2	
10:15	2.5	20	15.62	7.18	1.000		3.23	2	
		PLE C							
			= [a					
								×	

Sample Method: LOW FLOW Water Level at Sampling	TION: Dedicated: Y V
Water Level at Sampling	133
Pump Parameters:	
Refill Time (sec):	Discharge Time (sec):
Pressure Setting (psi):	
Sample Characteristics: CLEAR	NOODOR
Comment and Observations:	***************************************
	4.0 std. = 470 4.49 mS/cm = 1-459 mS/cm
SAMPLE COLLECTION	
Laboratory:	
Trip Blank Date:	Field Blank Date:
GENERAL INFORMATI Weather Conditions at Time of S General Comments and Observa	Sampling:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pН	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

13.07 7.40 1.774

7.30

7,24

14.04 7.18

SAMPLED

1.775

1.734

1.731

1.731

5:50

30

1539

1542

Geosyntec[>]

con	Ç1	ili	ta	n	ts
COL	o.	44	LCL	11	12

	0.17	01	11	1		01.								
Location	: 947	Casito	S VI	2/2	Staff:_	S/OF	1							
Project 1	Vame:	risse	JWI) [8/13/		· ·						
Sample l	ID: SW	-F-02	-90	6.03	Sample	Matrix:	h)		SAMPLING INFORMATION:				
			170	823						Sample Method: PVICE Dedicated: Y / N				
										Water Level at Sampling:				
PURG	E INFO	RMATIC	DN:				(Pump Parameters:				
	lethod: DE		PUNY	083-			\ -/	N		Refill Time (sec): Discharge Time (sec):				
	itiated: <u>15</u>	5615	10			niet Dept				Pressure Setting (psi):				
	ater Level	_	/_			ising Vol			_	Sample Characteristics: CEAR, 600 MESS				
	eferenced T	0:	_			Jol. Purg		37 /	2	Comment and Observations:				
GW Ele		$-\!\!\!/\!$	_			urged to			(N)					
	tal Depth:	/	$\overline{}$			evel Afte Complete								
Casing I	Diamet e r: _		_		_ lime (complete	d. 1 200			INSTRUMENT DATA:				
Wel	1 777	iter P	i	Well	We	11 (overt fee	t One (Casing	Meter Type: 451556 Serial #: 15 M100 686				
Depth		el (ft)	·	dius (fi			to gallons		(gal)	Calibration Date: 8/21/13 Calibration By: 1200				
/ Deput	(II) Levi) * 3.1		10103 (10	*	*	7.48	= +0.	(64.)	Calibration: PH: 4.0 std. = 4.0				
	<u> </u>) 3	1.4				1.40			Conductivity: 4.49 mS/cm = 1.49 mS/cm				
DIIDC	E DATA									1:49				
FUNG	EDATA	-	ĭ		1	7	_			SAMPLE COLLECTION DATA:				
										Laboratory:				
	Purge	Total	Temp.		Conduct.	TDS	DO	Turbidity	ORP	Trip Blank Date: Field Blank Date:				
Time	Rate	Volume	(C)	pН	(uS/cm)	(ppm)	(mg/L)	(NTU)	(mV)					
		Removed	` ~			4	,,	` `	`	GENERAL INFORMATION:				
1	1 L/Wi	4			l					Weather Conditions at Time of Sampling:				

7

Field Measurement	Replicates	Acceptance Limits		
Temperature	2	± 0.5° C		
pH	2	± 0.2 standard units		
Turbidity	2	± 5%		
Specific Conductivity	2	± 5 %		
Dissolved Oxygen	2	± 6 %		
Total Dissolved Solids	2	± 10%		
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$		

Weather Conditions at Time of Sampling: General Comments and Observations:

Geosyntec^o

consultants

Location: 16 Project Name Sample ID: 6	1906 U 5W-D-0	PEEK PUTS 4-171	Brp.	Staff: R. L.C. Date: 9.18. Sample Matri		1140N		
PURGE II Purge Metho Time Initiate	d: LOW FL		•	Dedicated: Pump Inlet D	Y / (3) epth: 24.5) D		
Initial Water	Level: 28.	80		One Casing Vol.: — Total Vol. Purged: +++ 72				
Level Refere	nced To: WO	ODEN	ODARDS					
GW Elevatio				Well Purged	to Dryness:	Y		
Well Total D	epth: -3	29.86	/	GW Level A	fter Purge: 2	8.80		
Casing Diam	eter: ~4	PET		Time Compl	leted: 1025			
Well Depth (ft)	Water Level (ft)	Pi	Well Radius (ft)	Well Radius (ft)	Covert feet to gallons	One Casing Vol (gal)		

Well Depth (ft)	Water Level (ft)	Pi	Well Radius (ft)		Covert feet to gallons	One Casing Vol (gal)
(-)	* 3.14 *		*	* 7.48 =	

PURGE DATA:

]	l'ime	Puri Rat (4/m	e	Total Volume Removed	Temp.	pН	Conduct. (nS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORÆ (#N)
fo	(4	14 L	15	1	13.97	689	1.607		453	7,40	
10	103	4		4.5	13-99	6.95	1.604		4.11	10.6	
Jo	רש (כ			22.5	181.51	96	1.607		3.91	(3.)	
įd:	12			45,0	13.98	6915	1.606		3.72	5.3	3.5
10	0:14	-		54.0	_	1	_		/	7.7	
1	0.15			58,5	-	1	_		-	7.46	
10	1.16	\		63	1398	6.25	1.606		365	6.59	
			7	Sant	,		ULEG	20	2 (81.c	

SAMPLING INFORMATION	•
Sample Method: Low Flow	Purche Dedicated: Y / N
Water Level at Sampling: 28.8	
Pump Parameters:	
Refill Time (sec):	Discharge Time (sec):
Pressure Setting (psi)	Others ():
Sample Characteristics:	_ , ,
Comment and Observations: INITIA	LHIGH SOLIDS FROM STIRRIN
UPSEDIMENT	
INSTRUMENT DATA:	
Meter Type: VSI 556	Serial #: 15M100686
Calibration Date: 9.18.17	Calibration By: L
	std. = 4,0
	$g_{mS/cm} = 1.400 \text{ mS/cm}$
7.9	09
CAMPLE COLLECTION DA	TA.

Field Measurement	Replicates	Acceptance Limits		
Temperature	2	± 0.5° C		
pH	2	± 0.2 standard units		
Turbidity	2	± 5%		
Specific Conductivity	2	± 5 %		
Dissolved Oxygen	2	± 6 %		
Total Dissolved Solids	2	± 10%		
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$		

Weather Conditions at Time of Sampling: General Comments and Observations:

Field Blank Date:

Laboratory:

Trip Blank Date:

GENERAL INFORMATION:

Geosyntec consultants

 $\pm 20 \text{ mV}$

										Constitution
Location: Project Na Sample ID	me: VCE	HD OW	5		Date:	2. LUS 9.18.1- Matrix:	7	e. Wilson	<i>∨</i>	SAMPLING INFORMATION:
PURGE Purge Met Time Initial Initial Wat Level Refo GW Eleva Well Tota Casing Di Well Depth (f	INFOI hod: Morated: _//. ter Level: erenced Tition: 1 Depth: _ ameter: _ Wa t) Leve	RMATIC mal pon 35 N/A o: atter P	ON:		One Carlotal Vell F GW L Time C	asing Vo. Vol. Purg Purged to evel Afte Complete		et One C	Casing (gal)	Sample Method: New Often Dedicated: A / N Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations: ANDLE PORT IS IN STOPAGE TANK, FILL OINT INSTRUMENT DATA: Meter Type: Calibration Date: 9/8/7 Calibration: PH: 4.0 std. = 4.0 Conductivity: Conductivity: 449 mS/cm = 1409 mS/cm
Time	Purge Rate	Total Volume Removed	Temp. ("C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	SAMPLE COLLECTION DATA: Laboratory: Trip Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
11:43	1		15.91	7.7	1.964		3.40	0		General Comments and Observations: VERY SULFULOUS SMELL OF WATE
11:46			15.18				3.2	<u> </u>		Field Measurement Replicates Acceptance Limits
11:49			15.23	176	1.892		2.92	0		Temperature 2 ± 0.5° C
					1	0	-			pH 2 ± 0.2 standard units
- 51	MPLE	Cour	05	DA	11:5					Turbidity 2 ± 5%
										Specific Conductivity 2 ± 5 %
					<u> </u>					Dissolved Oxygen 2 ± 6 %
										Total Dissolved Solids 2 ± 10%

Oxidation-reduction potential

Geosyntec[>]

consultants

		NPK DR.			Staff: 1	1. LUST	16, R.	MILSON	/ ——⊚	
rroject iva Sample ID	me: <u>v C</u>	1-01-17	0919		Sample	Matrix:	4-0		_	and the second s
Jumpic 115	- Calv I				_ oumpic		177			SAMPLING INFORMATION:
										Sample Method: NORMAL PUMP OFFRATION Dedicated: (Y) N
PURGE	INFO	RMATIO	ON:				1			Water Level at Sampling: Pump Parameters:
Purge Met	ON:bon	employ	UP OPER	MORE	Dedica	ted;	0 1	N		Refill Time (sec): Discharge Time (sec):
Γime Initia	ited:	14:15			Pump I	nlet Dept				Pressure Setting (psi): Others ():
Initial Wat				165	One Ca	asing Vol	l.: <u>-</u>			Sample Characteristics:
Level Refe								11		Comment and Observations: CALL NOTE MEASURE ON LEVEL
						urged to				DUE TO ALTIMO PUANT
Well Total						evel Afte				
Casing Dia	meter: _				- lime	Complete	a: <u>195</u>	2		INSTRUMENT DATA:
Well	We	ter P	ē	Well	We	11 (overt fee	t One C	Casing	Meter Type: VS 556 Serial #- 15M 1/0 686
Depth (ft			- 1	idius (ft)			to gallon:		(gal)	Calibration Date: 9,18.17 Calibration By: R.L. Calibration: PH: 4.0 std. = 40
(-) * 3.1		0.00 (1.	*	*	7.48		(87	Calibration: PH: 4.0 std. = 4.0 std.
DUDGE	DATA									Conductivity: 4:49 mS/cm = 1409 mS/cm
PURGE	DAIA		·			-		-		SAMPLE COLLECTION DATA:
		11								Laboratory:
	Purge	Total	T		Conduct.	TDS	DO	Turbidity	ORP	Trip Blank Date: Field Blank Date:
Time	Rate	Volume	Temp.	pН	(nS/cm)	(ppm)	(mg/L)	(NTU)	(mV)	
	()	Removed	`-'		(,	(FF-1)	(B)	(2.2.5)	(/	GENERAL INFORMATION:
	=							-		Weather Conditions at Time of Sampling:
111.17			100	75	ract		10.3			General Comments and Observations:
14:13			12.4	7.5	0951		10.5	L L		

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

10.0

Geosyntec consultants

Location:							GIR.W	NGEL		
Project Na	me: VLE	HD OWTS			Date: 0	1.10.17				
Sample ID): <u>GW-</u> (2-BK-06	-1709	19	Sample	Matrix:	Hzo			SAMPLING INFORMATION: Sample Method: PUMP OF ERUTION Dedicated: Y N
Time Initial War Level Refi GW Eleva Well Tota Casing Di	thod: Punated: O'ther Level: erenced Tation: 1 Depth: ameter: Walth Level	~ Q 0	i Ra	Well adius (ft	One Carrotal Vell F	nlet Depinsing Vo. Vol. Purgeurged to evel Afte Complete		Y /	Casing (gal)	Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Discharge Time (sec): Pressure Setting (psi): Others (Sample Characteristics: Nothers (Sample Characteristics: Nothers (Sample Characteristics: Nothers (Serial #: 15 100666 Calibration Date: Calibration By: Calibration: PH: Conductivity: A49 mS/cm = H09 mS/cm 1.40^
Ţíme	Purge Rate	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)		Laboratory: Trip Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
0950			1495	7.09	1.203		HIGH	2		General Comments and Observations:
8823			1497	2,48	1.634		14/44	2		Field Measurement Replicates Acceptance Limits
0956			15.10	7.53	1,598		MAH	ī		Temperature 2 $\pm 0.5^{\circ}$ C
	-	-								pH 2 ± 0.2 standard units
	SAM	PLE C	BLLE	CTEL	AT	100	D			Turbidity 2 $\pm 5\%$
			,				=			Specific Conductivity 2 ± 5 %
	-						-			Dissolved Oxygen 2 ± 6 %

± 10%

 $\pm 20 \text{ mV}$

Total Dissolved Solids

Oxidation-reduction potential

GROUNDWATER SAMPLI	NG - PURGE & SAMPLE FIEI	D FORM Geosyntec
Location: GIRL SLOUT CAMP N. UR	VERSTAFF F. LINGSON R. LUSTIG	consultants
Project Name: V CEHD OWT5	Date: 0.19.17	
Sample ID: GW-0-07-170919	Sample Matrix: 1420	CAMPI INC INFORMATION

PURGE INFORMATION: Purge Method: NORMAL PUM OF FEATUR	Dedicated: (V / N
Time Initiated: 10 : 39	Pump Inlet Depth:
Initial Water Level:	One Casing Vol.:
Level Referenced To: 10C	Total Vol. Purged:
GW Elevation:	Well Purged to Dryness: Y / N)
Well Total Depth: ~ 36'	GW Level After Purge: 22.59
Casing Diameter:	GW Level After Purge: 22.59 Time Completed 1055

Well Depth (ft)	Water Level (ft)	Pi	Well Radius (ft)	Well Radius (ft)		One Casing Vol (gal)
(-)	* 3.14 *		*	* 7.48 =	

PURGE DATA:

Time	Purge Rate (600)	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
10:39			17.1	7.5	1.897	/	7837	0	/
10:42			17.1	7.4	1.890	/	7.38	0	/
10:45			17.0	7.4	1.890	1	7.37		/
	57	mpi	E	න	LEC	TEP	AT	10:4	49 B
									(*)

SAMPLING	INFORMATION	ON:		B
	NORMAL PUMP		Dedicated:	CY / N
Water Level at	Sampling: <u>22.59</u>		6	
Pump Paramete		/		
	ime (sec):		Time (sec):	
	e Setting (psi):	Others ():	
Sample Charact	reristics:			
HOLD ON TO	Bottles Tiel	HELY	WHILE PUMP	S PUTIVE
INSTRUME Meter Type: Y Calibration Dat	61 556 e: 9,19.17	Calibra	#: ISM 100681 ation By: R.L.	'
Calibration:			٥,	
	Conductivity:	4.49 mS/cm = 1,2	101 mS/cm	
	OLLECTION I	x		
Trip Blank Date	e:	Field Blank I	Date:	
CENEDAL	TATE OF TAXABLE	. T. T		
	INFORMATIO			
	tions at Time of San			
General Comm	ents and Observatio	11.5 :		

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pН	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec consultants

PURGE Purge Met Time Initial Wat Level Refe GW Eleva Well Total Casing Dia	INFOI hod: No hed: 1 cer Level: erenced T tion:	RMATIC OMALPI	N:	5	Date: One Carrotal Vell P	Matrix: Med: nlet Dep using Vo Vol. Purg	H ₂ 0	N : Y /		SAMPLING INFORMATION: Sample Method: NORMAL OPS SAMPLE PORT Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations: INSTRUMENT DATA:
Well Depth (f	t) Leve) * 3.1	Ra	Well idius (ft	We Radiu		Covert fe to gallon 7.48	s Vol		INSTRUMENT DATA: Meter Type:
Time	Purge Rate (GPM)	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	Laboratory: Field Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
1315		_			1.003	/	5.37	0	/	General Comments and Observations:
	SA	MPLE	Cou	etTE	DAT	320				Field Measurement Replicates Acceptance Limits
										Temperature 2 $\pm 0.5^{\circ}$ C $^{\circ}$ C $^{\circ}$ 2 ± 0.2 standard units
-									3	pH 2 ± 0.2 standard units Turbidity 2 $\pm 5\%$
							-			Specific Conductivity 2 ± 5 %
										Dissolved Oxygen 2 ± 6 %
										Total Dissolved Solids 2 ± 10%
										Oxidation-reduction potential $2 \pm 20 \text{ mV}$

Geosyntec consultants

Project Na	Project Name: VCCAD OVS Sample ID: 60-6-14				Date: 0	2. 21.12 19.12 Matrix:	h	LVST1 G	_	SAMPLING INFORMATION: Sample Method: MOCAL OF ELATION / SAMPLE PLAT Dedicated: (7 / N
Purge Met Time Initia Initial Wa Level Refi GW Eleva Well Tota	PURGE INFORMATION: Purge Method:					asing Vol	th: l.: ed: Dryness or Purge:	: Y /		Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations: INSTRUMENT DATA:
Well Depth (f	t) Leve	el (ft)) * 3.1	Ra	Well idius (fl) Radiu		Covert feeto gallon 7.48	s Vol	Casing (gal)	Meter Type: $\frac{\sqrt{51556}}{\text{Calibration Date:}}$ Calibration: PH: Conductivity: Serial #: $\frac{5M10068L}{Calibration By: R.L.}$ Conductivity: 4.0 std. Conductivity: A4976S/cm = $\frac{1209}{MS/cm}$ MS/cm
Time	Purge Rate	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	SAMPLE COLLECTION DATA: Laboratory: Trip Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
1340	619	-0.6			1.013	A	6.13	0	_	General Comments and Observations:
	24	wie	cou	recv	ED AT	13:45				Field Measurement Replicates Acceptance Limits
		-								Temperature $2 \pm 0.5^{\circ} C$
										pH 2 ± 0.2 standard units
										Turbidity 2 $\pm 5\%$
							l			Specific Conductivity 2 ± 5 %
-						-	_ ×	-		Dissolved Oxygen 2 ± 6 %
										Total Dissolved Solids 2 ± 10%
										Oxidation-reduction potential $2 \pm 20 \text{ mV}$

Geosyntec consultants

PURGE Purge Met Time Initial Wat	Project Name: NCEHD OVER Project Name: NCEHD OVER Sample ID: GIV-C- 04 PURGE INFORMATION: Purge Method: NO MAN OF EATTON Time Initiated: 1359 Initial Water Level: — Level Referenced To: — GW Elevation:					Matrix: y ded: nlet Dept using Vol	th:	N		SAMPLING INFORMATION: Sample Method: No long by the operation Dedicated: Y / N Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics:
					Total V	ol. Purg	ed:	: Y /	(N)	Comment and Observations:
Well Total					GW L	wgeu to evel Afte	r Purge:			
Casing Dia	ameter:						ed: <u>14</u> :			INCORDITATION TO A T A .
Well Depth (f	Wa	ter P	i Ra	Well dius (fl	We		Covert fe- to gallon 7.48	s Vol		INSTRUMENT DATA: Meter Type: \(\frac{15}{56} \) Calibration Date: \(\frac{0.19.17}{9.19.17} \) Calibration: \(\text{PH}: \) 4.0 std. \(= \frac{4.0}{2.0} \)
PURGE	DATA	:			î .			1		SAMPLE COLLECTION DATA:
Time	Purge Rate ((gfM)	Total Volume Removed	Temp, (°C)	pН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)	Laboratory: Field Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
1405	124	_	16.45	6.92	1.123	/	2.71	O	/	General Comments and Observations:
	Ample	coll			4:10 -					
	por n CX	Coll	PCIC		190 -					Field Measurement Replicates Acceptance Limits
										Temperature 2 ± 0.5° C
-				7,						pH 2 ± 0.2 standard units
							-			Turbidity 2 ± 5%
										Specific Conductivity 2 ± 5 %
										Dissolved Oxygen 2 ± 6 %
										Total Dissolved Solids 2 ± 10%
										Oxidation-reduction potential 2 ± 20 mV

Geosyntec consultants

Project Name: VLEHD GHTS Sample ID: GW-B-03_170920	Staff: R.LUSTIG R.MISIN Date: 9.20-17 Sample Matrix: H20	SAMPLING INFO
PURGE INFORMATION: Purge Method: PUM CYCLING Time Initiated: 0895 Initial Water Level: 2972 Level Referenced To: # BToC GW Elevation: Well Total Depth: ~ 100'	Dedicated:	Water Level at Sampling Pump Parameters: Refill Time (sec) Pressure Setting Sample Characteristics: Comment and Observati
Casing Diameter:	Time Completed: 0915	INSTRUMENT D
Well Water Pi Well Depth (ft) Level (ft) Radius (ft)	Well Covert feet One Casing Radius (ft) to gallons Vol (gal)	Meter Type: VSICS Calibration Date: 912 Calibration: PH:
(-)*3.14*	* * 7.48 =	Calibration: PH: Cond

Tíme	Purge Rate ()	Total Volume Removed	Temp. (°C)	рН	Conduct. (uS/cm)	TDS (ppm)	DO (mg/L)	Turbidity (NTU)	ORP (mV)
0850			15.35	7.58	1.058	_	7.07	2	disme
0855			15.34	7418	1.059	_	720	2	-
5	AMEL	F CBL	.47	A	T 69	00~			_
						2			
-									
		A	15						

SAMPLING INFOR	NATION:	
Sample Method: Pump		dicated: 😗 / N
Water Level at Sampling:		
Pump Parameters:		
Refill Time (sec):		ec):
Pressure Setting (psi): Others ():
Carried Characteristics		
PULGIE AND SAMP INSTRUMENT DAT		CO REPAIRE
Meter Type: VSICS 6	Serial #: 150	1100686
Calibration Date: 920.	17 Calibration By	: <u>R.L.</u>
Calibration: PH:	4.0 std. = 4.0	
~ .	tivity: 4.49 mS/cm = 1.461 m	0.7
Conduct	dvity. 33 ms/cm = (1 05 1 m	S/cm
SAMPLE COLLEC Laboratory:	1-2101	s/cm

GENERAL INFORMATION:

Weather Conditions at Time of Sampling: ____ General Comments and Observations: ____

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	$\pm 20 \text{ mV}$

Geosyntec[>]

Location:	m	FIOTAL	r Ro	aro cra	_ Staff: _	f.LUST	76 KM	MUSON		consultants
Project Na Sample II	ame: <u>YU</u> D: <u>(x W</u> -	EAD ON GOZ_	13	20	_ Date: _ _ Sample	Matrix:	170 1720		_	SAMPLING INFORMATION: Sample Method: 9000 005 / 9000 Dedicated: 0 / 1
PURGE Purge Me Time Initial Wa Level Ref GW Eleva Well Tota Casing Di Well Depth (f	thod: PVilated: Context Level: Cerenced Tation: 1 Depth: ameter: Watth Level	ater Fel (ft)	ri R	Well adius (fi	One C Total Well I GW L Time	Inlet Dep asing Vo Vol. Purg Purged to evel Afte Complete		et One (Casing (gal)	Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations: INSTRUMENT DATA: Meter Type: Yol 566 Calibration Date: Calibration: PH: 4.0 std. = 4/0 Conductivity: 4.9 mS/cm = 1/100
Time	Purge Rate (GPm)	Total Volume Removed	Temp. (°C)	рН	Conduct, (uS/cm)		DO (mg/L)	Turbidity (NTU)	ORP (mV)	SAMPLE COLLECTION DATA: Laboratory: Trip Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling:
0157	4.3	-	17:34	7.17	1,369	_	8.12	1	_	General Comments and Observations:
1000					1,392	-	7.78	1	_	Field Measurement Replicates Acceptance Limits
1003			17.40	7.07	1.393	_	7.69	1		Field MeasurementReplicatesAcceptance LimitsTemperature2± 0.5° C
		MLF	_	_	_	T 15				pH 2 ± 0.2 standard units
	7 51	IN TUT	COL	-ECTI	DN	1 10	05 -			Turbidity 2 $\pm 5\%$
	=									Specific Conductivity 2 $\pm 5\%$
										Dissolved Oxygen 2 ± 6 %
										Total Dissolved Solids 2 ± 10%
										Oxidation-reduction potential 2 $\pm 20 \text{ mV}$

0
SC
Y
11
C
V

(Well Depth (ft)	Well Total Depth: Casing Diameter:	Level Referenced To: GW Elevation:	Time Initiated: Initial Water Level:	PURGE INFORMATION: Purge Method: UM	Location: Project Name: Sample ID: GL
,) 1	Water Level (ft)	eter	a:	Level:	VFORMA	Source Source
* 3.14 *	25			35	NOI	200
	Radius (ft)				9	180403
* * 7.48	Radius (ft) to gallons	aple At	Total Vol. Purged: Well Purged to Dryness:	Pump Inlet Depth: One Casing Vol.:	Dedicated:	Staff: RL Date: 4/2/20/ Sample Matrix: G
		643	5 8:		Z Z	$\leq \infty$
	Vol (gal)		NA			

consultants

I dial missolved bolids										
H-1-17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1										
Specific Conductivity Dissolved Oxygen	5	108		S.	18/1		K	rea	0	
Turbidity	1									
Temperature pH	138	4.0	2-	£000.0	0.95 0.007 2.	4.	21.1			10:30
Field Measurement	142	0:2	2.1	500003	7.1 0.93 0,0007 2.1	7.1	21,1			10:27
General Comments and Observations:	941	1.4	7 301	0.000	1 0.92 0.0pox 3,1	7.1	20.7 7.		100	10:25 po
GENERAL INFORMATION: Weather Conditions at Time of Sampling:	(MV)		(mg/L)	Ke/	(B S/CZB)	7	6	(gpm) Removed (C)	(gpm)	
Laboratory:F	ORP	Conduct. TDS DO Turbidity	00	TDs	Conduct.	B.	Temp.	Total Volume	Purge Rate	

SAMPLING INFORMATION:

Comment and Observations:	Sample Characteristics:	Pressure Setting (psi):	Refill Time (sec):	Pump Parameters:	Water Level at Sampling:	Sample Method:
		Others (Discharge Time (sec):			
		<u> </u>	ime (sec):			Dedicated:
						× ×

INSTRUMENT DATA:

	alibration	Calibration Date:	Meter Type:
Conductivity:	PH:		
4.49 mS/cm = mS/cm	4.0 std. =	Calibration By:	Serial #:

SAMPLE COLLECTION DATA:

Trip Blank Date:	Laboratory
Field Blank Date:	

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	⇒ 500
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	±6%
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁶

 1		I- I			1 P] Ω	\$ €	L	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	P ₁
		10:57	10:55	Time	PURGE DATA:	Well Depth (ft)	Casing Diameter:	GW Elevation:	Initial Water Level: Level Referenced To	PURGE INI Purge Method: Tume Instructed:	Location: Sull E Project Name: With a Sample ID: GW-E-03
	\$		1/3	Purge	DATA	Water Level (ft)	meter	Depth:	enced To	NFOR	SW-E-
	m			Total Volume Removed		ter P ₁ (ft) P _{3.14} *	$\left\{ \right\}$			PURGE INFORMATION: Purge Method: fump Time Initiated: /0:53	200
	TIO	21.9	1,ce	Temp.						N.	8040
		7.1	7.2	Hiq		Well Radius (ft)					
	THE	7.20.9	0.9	Conduct. (aS/cm)		Radius (ft)	Tume	Well P	One Ca	Dedicated: Pump Inlet	Staff: Date: Sample
	2	0.0007	6 word	TDS (ppm)		*	Time Completed:	Well Purged to Dryness: GW Level After Purge:	One Casing Vol.: Total Vol. Purged:	Dedicated: Pump Inlet Depth:	Staff: RL Date: 4/24 Sample Matrix:
	AT	6.5	4.9	DO (mg/L)		to gallons	ļ,	Dryness:	& -	(3)	00/2
	11:0	-		Turbidity (NTU)		11	10	4		Z	
	36	134	132	ORP (mV)		One Casing Vol (gal)		2			

consultants

SAMPLING INFORMATION: Sample Method: Water Level at Sampling: Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations:

Tro Blank Date:	Laboratory	SAMPLE COLLECTION DATA:		Conductivity:	Calibration: PH:	Calibration Date:	Meter Type	INSTRUMENT DATA:
Field Blank Date:		I DATA:		Conductivity: 4.49 mS/cm = mS/cm	4.0 std. =	Calibration By:	Serial #:	
]	B-2	20				

B-20

General Comments and Observations:	Weather Conditions at Time of Sampling:	GENERAL INFORMATION:	ATTO DISTER DATE	Tan Dianit Data:	Laboratory
5. · · ·	pline	Z .	Fich Dialk Date.	Field Blank Date:	

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
рН	2	± 0.2 standard units
Turbidity	2	= 5%
Specific Conductivity	N	±5%
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁵ consultants

Y · X

			902 1	859	956	853,250	I mae Kare	Purge	PURGE DATA:		Well W Depth (ft) Lev	Casing Diameter:	Well Total Depth:	GW Elevation:	Level Referenced To	Initial Water Level	Time Initiated:	PURGE INFORMATION:		Sample ID GW	Project Name: V	2
	SPA			<u></u>			Removed	Total	**) * 3.14 *	Water Pi Level (ft)				Ιο	-	ないなり	RMATIO		-A-03	STA STA	· ・ ア
	JAG		18.2 +	18.2 7	4 7.18	18.36.8	(°C) PH			1 1	Well Radius (ft)									180403	733	
	14		56.0	560	0.95	0.95		Conduct.		*	(ft) Radius (ft)	l Ime (GWL	Well P	Total \	One Ca	Pump Inle	.		Sample	Staff:	
			7000,0	0.0007	7.000.0	0,0007 10.3	, -	TDS		*		I une Completed:	GW Level After Purge:	Well Purged to Dryness:	Total Vol. Purged:	One Casing Vol.:	Pump Inlet Depth:			Sample Matrix:	187	2
	103		7.7	a	0	0,3	٠	DO T.		34.	Covert feet to gallons		Purge:	тупеза:						rate	2019	
				_			(NIC)	Turbidity			One Casing Vol (gal)			Y						2		
			176	08	82	38	(mV)	ORP			esing (al)	j		4								
Oxidation-reduction potential	Total Dissolved Solids	Specific Conductivity	Turbidity	Temperature	Field Measurement	General Comments and Observations:	GENERAL INFORMATION: Weather Conditions at Time of Sampling:		SAMPLE COLLECTION DATA:	Calibration: PH: Conductivity:	Date	INSTRUMENT DATA:		COMMISSION STATE COSCI VERTICALES	Comment and Observations:	Pressure Setting (psi):	Refill Time (sec):	Pump Parameters:	Territoria de	SAMPLING INFORMATION:		
2	4 4	וא נ		2 2 ±02	Replicates Acce	tions:	ION:	Field Blank Date:		4.0 std = mS/cm	Serial #: Calibration By:					Others ():	ge Time (sec		Dedicated:			Consultants
± 20 n	# 100	H U1	± 5°,	± 0.5° ± 0.2 standa	Acceptance					ā									ted:			

B-21

± 0.2 standard units

± 5%

± 5 % ± 6 %

 $\pm 20 \text{ mV}$ ± 10%

Acceptance Limits ± 0.5° C

Geosyntec⁵

	929	1x6		PURGE DATA:	Well Depth (ft)	PURGE INFORMATION: Purge Method: Time Initiated: Initial Water Level: Level Referenced To GW Elevation: Well Total Depth Casing Diameter:	Location (The) Project Name IV Sample ID (LIV)
		25	Brid.	DATA	Water t) Level (ft)	INFOR hood:	
A. A.			Total Volume Removed		*	»	PHO PHO PHO PHO PHO PHO PHO PHO PHO PHO
)PL	<u> </u>	<u>a</u> 2	Temp.		*		1804 WO
3	4	414	ì		Well Radius (ft)		3
B	19.0	46.0	Conduct. (uS/cm)		Well Radius (ft)	Deducated: Pump Inlet One Casm Total Vol. Well Purg GW Leve Time Con	Staff: Date Sample
	£000,0	toxi0 960	(a) (a) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		*	Pump Inlet Depth. One Casing Vol. Total Vol. Purged: Well Purged to Dryness: GW Level After Purge: Time Completed:	Staff: R Date: 4/3 Sample Matrix:
93	20	4 5			Covert feet to gallons	h. ed: Dryness r Purge:	WAS
			Turbidity (NTU)		t One Casing Vol (gal)	X X	益。
	171	173	ORP (mV)		(gal)		

			Comment and Observations:
		Others (Pressure Setting (psi): Sample Characteristics:
	me (sec)	Discharge Time (sec)	Pump Parameters Refill Time (sec):
•			Water Level at Sampling:
*	Dedicated: V V	#	SAMPLING INFORMATION
	,	consultants	2

		Calibration Date	Meter Type	INSTRUMENT DATA:
Conductivity:	PH:			T DATA:
4.49 mS/cm = mS/cm	4.0 std. =	Calibration By:	Serual #:	
	Conductivity: $4.49 \text{ mS/cm} = \text{mS/cm}$	PH: 4.0 std. =	PH: 4.0 std. = Conductivity: 4.49 mS/cm =	Serial #: Calibration PH: 4.0 std. = Conductivity: 4.49 mS/cm =

SAMPLE COLLECTION DATA:

Trip Blank Date: Laboratory Field Blank Date:

		1	
ij			
THE VALUE OF THE PARTY OF THE P			
		1	
Palicates			
dicates Accept			
	l		
1	l		
3			
Accompance Line			
	l	١	

Weather Conditions at Time of Sampling: General Comments and Observations: GENERAL INFORMATION:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
рH	2	± 0.2 standard units
Turbidity	2	± 50,0
Specific Conductivity	2	# 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	ы	± 10°,0
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁶ consultants

PURGE INFORMATION: Purge Method: PUMP PURGE Intuated: AHO 947 Inntial Water Level: Level Referenced To GW Elevation: Well Total Depth 350 Casing Diameter	Location VRWD Project Name: VCEHD CW73 Sample ID GW-A-C4-18C403
Dedicated: Pump Inlet Depth. One Casing Vol.: Total Vol. Purged: Well Purged to Dryness: Y N GW Level After Purge: Time Completed:	Staff: 41312016 Sample Matrix: 10000

Calibration: PH:	Calibration Date	Meter Type	INSTRUMENT DATA:	Comment and Observations:	Sample Characteristics:	Pressure Setting (psi):	Refill Time (sec):	Pump Parameters	Water Level at Sampling:	Sample Method	SAMPLING INFORMATION:
4.0 std. =	Calibra	Serual #				Others (Discharge 7				TON:
	Calibration By					<u>,,</u>	Discharge Time (sec):			Dedicated.	
										× ×	

Purge Total Rate Volume (CC) (Apm) Removed (C) 17.67.1 17.67.1 7.67.10.97 0.0007 6.4 PH 0.97 0.0007 6.3 Conduct. TDS (nS/cm) (ppm) 4.9 40000 + 19.0 (mg/L) (NIC) (m) OR CP 49 164 99 SAMPLE COLLECTION DATA:

950

1000

953 956

	Laboratory: Trip Blank Date:	
	ik Date	
	1	
4	E	
	eid Bla	
	Field Blank Date:	

PURGE DATA:

Depth (ft)

Level (ft) Water

Radius (ft) Well

Radius (ft) Well

\$

Covert feet to gailons

One Casing
Vol (gal)

* 3.14 *

Well

'n

General Comments and Observations:	Weather Conditions at Time of Sampling	GENERAL INFORMATION:

Field Measurement	Replicates	Acceptance Limits
Temperature	2	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 500
Specific Conductivity	2	# 5 🐕
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	2	± 10°, o
Oxidation-reduction potential	2	± 20 mV

	Geo
	S
	7
-	
	00
•	
	\

		10		7				PUJ Purg Tume Instru Leve GW Well	Loca Proje Sam
		026	1023	1020	Time	RGE	Well Depth (ft)	PURGE INFO Purge Method: Time Initiated: Initial Water Leve Level Referenced GW Elevation: Well Total Depth Casing Diameter	Location
					Purge Rate	PURGE DATA:	Water Level (ft)	PURGE INFOR: Purge Method: Time Initiated: Initial Water Level: Level Referenced To GW Elevation: Well Total Depth Casing Diameter:	13 10
	SAM	Jan 1	200	Hoal	Total Volume Removed		ter Pi	PURGE INFORMATION: Purge Method: DUDICO Time Initiated: 10/5 Initial Water Level: Level Referenced To Level Reveation: GW Elevation: Well Total Depth Casing Diameter	DLSH NCEHO
	22	10,5	18,57.	179	Temp.				01-180403
	B	71	7.1	7.1	Hq		Well Radius (ft)		03
	D	0.94	1.94 O.OUT	0.93	Conduct. (aS/cm)		Well Radius (ft)	Dedicated: Pump Inlet One Casin Total Vol. Well Purg GW Leve Time Con	Staff: Date Sample
	7	£000.0	0.007	0.0007	Ser Ser		*	Deducated: Pump Inlet Depth: One Casing Vol.: Total Vol. Purged: Well Purged to Dryness: GW Level After Purge: Time Completed:	Staff: RL Date 4/3/18 Sample Matrix: 110 ATER
	6	4.8	7.9	a	DO (mg/L)		Covert feet to gallons	h ed ed Dryness r Purge:	90
	30		_	-	Turbidity (NTU)		t One Casing Vol (gal)		TER
		165	164	164	ORP (mV)		àsmg (gal)		

Consultants

Calibration: PH: Conductivity:	Calibration Date	INSTRUMENT DATA:	Comment and Observations:	Pressure Setting (psi): Sample Characteristics:	Pump Parameters: Refill Time (sec):	Water Level at Sampling	SAMPLING INFORMATION: Sample Method
PH: 4.0 std. = mS.cm	Calibration By:	Serval #:		Others ():	Discharge Time (sec):		ITION: Dedicated: Y N

SAMPLE COLLECTION DATA:

GENERAL INFORMATION:
Weather Conditions at Time of Sampling
General Comments and Observations: Laboratory
Trap Blank Date: Field Blank Date:

Field Measurement	Replicates	Acceptance Limits
Temperature	ę,	± 0.5° C
рH	2	± 0.2 standard units
Turbidity	ы	± 500
Specific Conductivity	ы	₩ 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	Ņ	± 10°,
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁶ consultants

		4		_			
011	Time	PURGE DATA:	Well Depth (ft)	Casing Diameter	Level Referenced To GW Elevation:	PURGE INFORMATION: Purge Method: Appropriate Instanted: 110 5 Instal Water Level:	Location Le Project Name Sample ID C74
6		DATA	Water Level (ft)	meter	renced To	in FORM	1-046 10 11 000 10 11 000
30	Total Volume Removed) * 5.14 *	-			Shurp 105	1088A 1088A 1088A 100-100-188463 100-100-180403
17.5	Temp.	•				?	180403 180403
6.8	Hq		Well Radius (ft)				103 Cot
17.5 6.8 1.6 0.013 3.6	Conduct.		Well Radius (ft)	Time	Well P	Deducated: Pump Inlet One Casm	Staff: 4/3, Date: 4/3, Sample Matrix
0.0013	7/5/ (a.46) sd1			Imme Completed:	Total Vol. Purged: Well Purged to Dryness GW Level After Purge:	Deducated: Pump Inlet Depth: One Casing Vol.:	Namx:
3.6	DO (mg/L)	-: ±8	Covert feet to gallons	٥	Dryness:		50
	Turbidity (NTU)	l l			Y		5
182	ORP (mV)		(gal)		7		

Comment and Coservations.	Pump Parameters: Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Others ():	Sample Method: Dedicated Y N Water Level at Sampling:
		∀ ~

	Calibration	Calibration Date	Meter Type
Conductivity:	PH:		
Conductivity: $4.49 \text{ mS/cm} = \text{mS/cm}$	4.0 std =	Calibration By:	Serval #:

SAMPLE COLLECTION DATA:

General Comments and Observations: GENERAL INFORMATION: Weather Conditions at Time of Sampling Laboratory: Trap Blank Date: Field Blank Date:

な

16.46.7 1.6 0,0013 2.8

三い

16.96.7 1.6

T.6 8100.0

164

170

Field Measurement	Replicates	Acceptance Limits
Гемрегаture	2	± 0.5° C
рН	ы	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	ы	H 5 👰
Dissolved Oxygen	ы	± 6 %
Total Dissolved Solids		± 10°°
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁶

							İ			
Oxidation-reduction potential										
Total Dusolved Solids										
Specific Conductivity									(
Turbidity	2	3	7	0	3	1/1	01	F		
Temperature										
Field Measurement										
General Comments and Observations:	SO SO	-	60	Barans	1.1	7.0	189			018
	ORP (mV)	Turbidity (NTU)	DO (mg/L)	TDS (ppm)	Conduct.	PH	Temp.	Total Volume Removed	Purge Rate	Time
4									DATA	PURGE DATA:
Calibration: PH: 4.0 std Conductivity: 4.49 a		"	\$t.	*	1.		3,14 *	*	1.	
Meter Type: Calibration Date	asung gal)	One Casing Vol (gal)	Covert feet to gallons	\neg	Well Radius (ft)	Well		ter P ₁	Water	Well (ft)
INSTRUMENT DATA:	į.		١	Time Completed	Time (meter	Casing Diameter
			Purge _	GW Level After Purge:	GW L				Depth _	Well Total Depth
Comment and Coxet valuous.	Z	Υ .	Dryness	Well Purged to Dryness:	Well P				100	GW Elevation:
Sample Characteristics			4	One Casing Vol	Total V				er Level:	Instal Water Level:
Pressure Setting (psi)	Ì			Pump Inlet Depth	Pump L		6		2	Tune instasted:
Pump Parameters Rafil Time (sec)		Z	<u>z</u>)	<u>8</u>	Deducated		S.		INFOR	PURGE INFORM
			II.							
SAMPLING INFORMATION:	ļ	Ç	100 A	Matrix	Sample Matrix	407	190	1-07-	-C11.5	Sample ID 4110-11-07-190403
COL			ā	S. S.	Staff		2	3	Yes	Location V

ater Level at Sampling: mp Parameters mple Method MPLING INFORMATION: Refill Time (sec): Pressure Setting (psi): consultants Others (Discharge Time (sec) Dedicated 4 ... '/

	Calibration	Calibration Date	Meter Type	INSTRUMENT DATA:
Conductivity	PH			NT DATA:
Conductivity: 4.49 mS/cm = mS/cm	4.0 std. =	Calibration By:	Serial #	

sp Blank Date: MIPLE COLLECTION DATA: Field Blank Date

Field Measurement	Replicates	Acceptance Limits
Temperature	ري	± 0.5° C
pН	2	± 0.2 standard units
Turbidity	2	# 50°0
Specific Conductivity	2	# 5 %
Dissolved Oxygen	IJ	±6%
Total Dussolved Solids	2	± 10°, b
Oxidation-reduction potential	2	± 20 mV

Geosyntec (
-------------	--

1335 183 183 69	Time Rate Volume (*C) pH	PURGE DATA:	()*3.14*	Well Water Pi Well Depth (ft) Level (ft) Radius (ft)	Casing Diameter:	GW Elevation: Well Total Depth:	Level Referenced To:	I une Initiated:	Purge Method: Plant Purge Method: Purg	Project Name: VCF4 15 0075 Sample ID AW-C-08 1804-03	
1.05 p.ms b	Conduct. TDS D (mg/s) (mg/s/L)		*	Well Radius (ft)	Time Completed:	Well Purged to Dryness: GW Level After Purge:	Total Vol. Purged:	One Casing Vol.:	Dedicated:	Staff: 413118 Sample Matrix: 14)
0 17	DO Turbidity ORP (mg/L) (NTU) (mV)		7.48 =	Covert feet One Casing to gallons Vol (gal)		rge: Y N			z z	rter	

V

_	_	_		_			1										
Oxidation-reduction potential	Total Dissolved Solids	Dissolved Oxygen	Specific Conductivity	Turbidity	pH	Temperature	Field Measurement	Weather Conditions at Time of Sampling: General Comments and Observations:	Trip Blank Date:	SAMPLE COLLECTION DATA:	2	INSTRUMENT DATA:	Comment and Observations:	Pressure Setting (psi):	Refill Time (sec):	Water Level at Sampling:	Sample Method:
2	2	2	2	2	2	2	Replicates	npling:	Field Blank Date:	DATA:	Serial #: Calibration By: 4.0 std. = mS			Others (Discharge Time (sec):		O <u>N</u> :
± 20 mV	± 10%	± 6 %	± 5 %	± 5%	± 0.2 standard units	± 0.5° C	Acceptance Limits		2		m By:).	me (sec):		Dedicated: Y N
								A 6 N	18 357	В	-27		* 1	65			

Geosyntec⁵

St	900 2 36	857 2 30	854 2 24	852 2 20	Time Rate Volume	PURGE DATA:)*	Well Water Depth (ft) Level (ft)	Casing Diameter	Well Total Depth	GW Elevation	Level Referenced To	Initial Water Level	Purge Method: Run Time Initiated: 8391	PURGE INFORMATION:	Sample ID GLO-B-03	Project Name W Cott	01/-2
mp.	18.1	017.3	25	17.2	Temp.		5 14 *	\vdash						0	ON N	-180404	02 7	N N
E C	4	4	4	£	рΗ			Well Radius (ft)									7	
D	[0]	8.99	1001	0,09	Conduct. (uS/cm)		*	Well) Radius (ft)	Lime	1 6 8	_ Well F	Total	One C	Dedicated Pumo Inlet		Sample	Date	2
	0.0008	8000 90.0	ans	0,0008	TDS (ppm)			\vdash	I me Completed	GW Level After Purge	Well Purged to Dryness	Total Vol. Purged:	One Casma Vol	Deducated Pump Inlet Depth		Sample Matrix	4/4	10
90	6.6	6.7	7,1	1.9	DO (mg/L)		34	Covert feet to gallons	٩	r Purge	Dryness:	2		4)	WO	1/8	
φ	N	W	n	5	Turbidity (NTU)		н				Υ			Z		ager		
	137	140	1550	160	ORP (mV)			ne Casmg Vol (gal)			Z							

consultants

Calibration Date Calibration By: Calibration By: Calibration: PH: 4.0 std. = mS·cm	INSTRUMENT DATA: Meter Type: Senal *: Senal *:	Comment and Observations:	Pressure Setting (psi): Others (): Sample Characteristics:	Pump Parameters Refull Time (sec): Discharge Time (sec):	Water Level at Sampling:	Sample Method: Dedicated: Y
-28						N × A

GENERAL INFORMATION: Weather Conditions at Time of Sampling: General Comments and Observations:	Trip Blank Date:	SAMPLE COLLECTION DATA:
The state of the s	Field Blank Date:	ITA;

Tamparatura	Field Measurement	
Ţ	nt Replicates	
+ 0 <0 C	Acceptance Limits	

Field Measurement	Replicates	Acceptance Limits
Темрегание	6.1	± 0.5° C
рН	2	± 0.2 standard units
Turbidity	2	1 500
Specific Conductivity	2	± 5 %
Dissolved Oxygen	2	±6.9
Total Dissolved Solids	ы	± 10°,0
Oxidation-reduction potential	2	± 20 mV

グロ

	1 1		r				y TO			Ű	×	Q L	ī	# 2 7	<u>U</u>	SPL
			420	1025	660	I.	PURGE DATA		Well Depth (ft)	Casing Diameter	Well Total Depth	GW Elevation 10	Initial Water Level	Purge Method Tume Instructed	-BCF	Location (2) Project Name. Sample ID (2)
					- T.	Purge Rate	DATA		Water Level (ft)	meter.	Depth	renced 1	er Level		NEO!	P C
						Total Volume Removed) * 3.14	ter Pi					Purge Method: Williams Instanted:	JILVING	
	A)	57	17.5	17:5	Temp. (*C)		*						7		150 J
	3		1.5	12	15	рΗ			Well Radius (ft)							0404
	M		1.7	1.7	4.1	Conduct. (nS/cm)		*	Well Radius (ft)	Time	GWL	Well F	One C	Dedicated Pump Inle		Staff: Date Sample
5			0.0013	0.0013	0,0013	TDS (ppm)		*	-	Time Completed:	GW Level After Purge:	Well Purged to Dryness:	One Casing Vol	Dedicated: Pump Inlet Depth		Staff: 444 Date 444 Sample Matrix:
S.	A)		5.3	びいい	5,2	DO (mg/L)		2.48	Covert feet to gallons	١	r Purge:	Dryness	1	(Y)		200
			4	W	3	Turbidity (NTU)		И	t One Casing Vol (gal)			Y		Z		5
			-88	-1A	-28	ORP (mV)			gal)			2				
١o	- 1 H %		اب		l ë	Trap OF	20 D		Met	N	ĺ	Com	S	Pum	Sam: Wate	SAI

	,
consultants	Geosyntees

Calibration Date Calibration By: Calibration: PH: 4.0 std. = mS cm	INSTRUMENT DATA: Meter Type: Serial #:	Comment and Observations:	Pressure Setting (psi): Others (): Sample Characteristics:	Pump Parameters Refull Time (sec): Discharge Time (sec)	Water Level at Sampling:	Sample Method: Dedicated: Y	SAMPLING INFORMATION:
						- Y = X	

p Blank Date: MPLE COLLECTION DATA: Field Blank Date:

ENERAL INFORMATION:
sther Conditions at Time of Sampling
teral Comments and Observations:

Field Measurement	Replicates	Acceptance Limits
Temperature	,	± 0.5° C
рH	2	± 0.2 standard units
Turbidity	2	= 50°0
Specific Conductivity	17	± 5 %
Dissolved Oxygen	2	± 6 %
Total Dissolved Solids	13	± 10°,
Oxidation-reduction potential	2	± 20 mV

Geosyntec⁵

Pr Sa 2 5

Location SIRL SCOUTS Project Name VCDAD ODUTS Sample ID GILL-DOT-180404	Staff: KL Date 44/18 Sample Matrix: 18 19 10	n to
PURGE INFORMATION: Purge Method:	Dedicated: (Y) N	7 V V
Tune Instacted:	Pump Inlet Depth. One Casing Vol.	n
Level Referenced To:	Total Vol. Purged:	0 4
Well Total Depth		Ê
Casing Diameter	Time Completed:	1

	- 84	*		* 3.14 *	_	
Vol (gal)	to gallons	Radius (ft) to gallons	Radius (ft)		Level (ft)	Depth (ft)
t One Casing	Covert feet	Well	Well	P	Water	Well

consultants

INSTRUMENT DATA: Meter Type Calibration Date Calibration: PH:	Pump Parameters Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations:	SAMPLING INFORMATION: Sample Method: Water I cred at Sampling:
Serial #: Calibration By: 4.0 std.	Discharge Time (sec): Others ():	TION:
on By:	me (sec):	Dedicated:
		X X

SAMPLE COLLECTION DATA:

Conductivity:

4.49 mS/cm =

mS cm

p Blank Date: Field Blank Date:

teral Comments and Observations:

Field Measurement	Replicates	Acceptance Limits
Temperature	6.1	± 0.5° C
pH	2	± 0.2 standard units
Turbidity	2	± 5%
Specific Conductivity	ю	± 5 %
Dissolved Oxygen	7	# 6 %
Total Dissolved Solids	2	± 10%
Oxidation-reduction potential	2	± 20 mV

PURGE DATA:

Oxidation-reduction potential										
Dissolved Oxygen Total Dissolved Solids	(700	J		127	11/11	2			
Specific Conductivity	3	ID	41		20	3	5			
pH Turbidity										
aperature	S)	_	4,3	2100.0	17.21.51 6.00125.4	7.2	15,2			1052
Field Measurement R	ري نن	O	5,5	c1000	7.21.51 0,00125.5	7.2	15.2			1050
General Comments and Observations:	9.1		5.3	0.0012	15,27,11,51000125,3	7.1	15.2			104e
GENERAL INFORMATION: Weather Conditions at Time of Sampling	(i	(310)	(47,000)	18/2	(#5)C#)		3	Removed	-	
Laboratory: Fu	ORP	Turbidity	8	TDS.	Conduct. TDS	H	Temp.	Total Temp.	Purpe	Time
SAMPLE COLLECTION DATA										

Geosyntec⁵

consultants

X = X

	JAMPILA CERTAINAG	1253 400 200 19 7.3 0.9 p.000 710 5 50	Time Rate Volume (°C) pH Conduct. TDS DO Turbidity ORP (NTU) (mV)	Vater P1 Well vel (ft) Radius (ft) * 3.14 *	PURGE INFORMATION: Purge Method: Time Initiated: Initial Water Level: Level Referenced To GW Elevation: Well Total Dorth GWI I areal After Purge CWI I areal After Purge	Location MOCWD Staff: KL Project Name. Sample ID 6W-A-07_180404 Sample Mainx: WAVO.
Total Dissolved Solids 2 ± 10% Oxidation-reduction potential 2 ± 20 mV	2 ± 0.2 s		Laboratory: Trap Blank Date: Field Blank Date: GENERAL INFORMATION: Weather Condutions at Time of Sampling:		Water Level at Sampling: Pump Parameters Refill Time (sec): Pressure Setting (psi): Sample Characteristics: Comment and Observations:	Sample Method: Dedicated: Y

Geosyntec⁵

Project Name Sample ID GUI-D-CS 180405 Staff: Date Sample Matrix

Well Total Depth Casing Diameter	GW Elevation	Level Referenced To	Initial Water Level	Time instasted	Purge Method	PURGE INFORMATION:
	W	Tot	One	Pun	Ded	
GW Level After Purge:	Well Purged to Dryness:	Total Vol. Purged	One Casing Vol	Pump Inlet Depth	Deducated: (Y) N	

	П	\$1	*		* 3 14 *	,	
Vol (gal)	ğ	to gallo	Radius (ft) Radius (ft) to gallons	Radius (ft)		Level (ft)	Depth (ft)
Covert feet One Casing	3	Covert f	Well	Well	P	% ater	Well

Comment and Observations Water Level at Sampling: SAMPLING INFORMATION: Sample Characteristics Pump Parameters Sample Method Refill Time (sec): Pressure Setting (psi) consultants Others (Discharge Time (sec) Dedicated **⊢**¢

7.

	Calibration	Calibration Date
Conductivity	PH	
Conductivity: 4.49 mS/cm = mS/cm	4.0 std =	Calibration By

Meter Type:

Senal #

INSTRUMENT DATA:

DATIONA

LE COLLECTION DATA:

nk Date: Field Blank Date

Comments and Observations: RAL INFORMATION: Conditions at Time of Sampling

Field Mousurement	Replicates	Acceptance Limits
I emperature	ęJ	± 0.5° C
рH	t-J	± 0.2 standard units
Turbidity	IJ	11 500
Specific Conductivity	ŧ.	# 5 •
Dissolved Oxygen	ы	± 6 °•
Total Dissolved Solids	ы	± 10°.
Oxidation-reduction potential	LI	± 20 mV

1058	I.
	Purpe
	Total Temp. Volume (°C) Removed
3 00000	G P
F 900 11 N	12.
adda E	Conduct. (uS/cm)
0.0015 6.6 0.0015 2.9 0.015 2.9	E B
1,0015 6.6 2,0015 2.6 1,0015 2.6 1,0015 2.6	(£)
ラーショ	Turbidity (NTU)
160	
Field. Field. Tempe pH Turbid Specif Dissol Total I Oxidae	SAMPI Laborator Trap Bland GENER Weather (

Geosyntec 5

	1239 6 36 1242 6 536 1244 6 64	PURGE DATA: Purge Total Rate Volume (2007) Removed	PURGE INFORMATION: Purge Method DUNC Time Initiated 1233 Initial Water Level Level Referenced To GW. Elevation Well Total Depth Casing Diameter Water Pi Depth (ft) Level (ft)	Location MDSS Project Name VCE Sample ID GW-G-
BMPE	20.3 6.5 1 20.3 6.5 2 20.3 6.5	are (C) pH	P; Well Radius (ft)	18040s
		Conduct. ID(Dedicated Pump Inlet Depth One Casing Vol Total Vol. Purged Well Purged to Dryness GW Level After Purge Time Completed Well Radius (ft) * 18	Staff RL Date Sample Matrix
	0.001 5° 5 0.001 5° 5	DO THE	epth. viol viol urged to Dryneas to Dryneas to Purge letted Covert feet to gallions * 18	1317 x
248	1 103	Turbidity ORP (NIU) (mV)	Y N One Casing Vol (gal)	7

Comment and Observations	Pressure Setting (pst) Sample Characteristics	Refill Time (sec)	Pump Parameters	Water Level at Sampling:	Sample Method	SAMPLING INFORMATION:	
	Others (Discharge Time (sec)		l			
		(Sec.)			Dedicated		
					Y /		
					Z		

INSTRUMENT DATA: Meter Type	T DATA:	Serval #
Calibration Date		Calibration By
Calibration	PH	4.0 std =
	Conductivity	Conductivity: $4.49 \text{ mS/cm} = \text{mS/cm}$

SAMPLE COLLECTION DATA: Laboratory Trip Blank Date: Field Blank Date

Weather Conditions at Time of Sampling General Comments and Observations:

GENERAL INFORMATION:

Field Monsurement	Replicates	Acceptance Limits
Temperature	٤.3	± 0.5° C
рH	Ņ	± 0.2 standard units
Turbidity	Ŋ	H 500
Specific Conductivity	łJ	サン・
Dissolved Oxygen	ы	± 6 ° ₀
Total Dussolved Solids	13	± 10°°
Oxidation-reduction potential	F)	± 20 m√

Geosyntec⁵ consultants

NEETH OZUTS DATE PLS 118	1000	THE OUTS
--------------------------	------	----------

Staff Date Sample I	PURGE INFORMATION: Purge Method fump	Project Name NE EAH OWTS Sample ID GW-6-04-180405
	Deducated	Staff Date Sample Matrix
	(<u>F.</u>)	Cate 8

Pump Inlet Depth Well Purged to Dryness: One Casing Vol
Total Vol. Purged Deducated GW Level After Purge Tume Completed

GW Elevation Well Total Depth Casing Diameter

Level Referenced To

Initial Water Level Tune Instruted

	- St =	*		116		
Vol (gal)) to gallons	t) Radius (ft)	Radius (ft)		Level (ft))epth (ft)
One Casme	Covert feet	Well	Well	7	Water	Well

PURGE DATA:

	1404	6041	359	Ī
1	0.1	1.0	0,78	Purpe
Me	12.587	10.5 18.7	705	Total Volume Removed (*C)
Q	4.8	18,7	To the second	Temp.
0	ti	4	4	PH.
	1,04	1.04	1.04	Conduct.
	2000	1.04 apps	8.4. 8000 \$0.1	TDS (and a)
	7.5	8.4	8.4	DO 00
140	a a a a a a a a a a a a a a a a a a a	_	φ	Turbidity (NTU)
6	108	100	pal	ORP (mV)

SAMPLING INFORMATION:

Comment and Observations	Sample Characteristics	Pressure Setting (psi)	Refill Time (sec):	Pump Parameters	Water Level at Sampling	Sample Method	CONTRACTOR OF THE CANADA PARTIES OF THE
		Others (Discharge Time (sec)				
			me (sec)			Dedicated Y	
						- -;	
						Z	

INSTRUMENT DATA:

	Calibration	Calibration Date	Meter Type
Conductivity	PH	ate	
4.49 mS cm = mS cm	4.0 std	Calibration By	Senal #

SAMPLE COLLECTION DATA:

Trip Blank Date: Laboratory Field Blank Date

General Comments and Observations: Weather Conditions at Time of Sampling GENERAL INFORMATION:

Field Measurement	Replicates	Acceptance Limits
Тетрегание	٤٦	± 0.5° C
pH	LI	± 0.2 standard units
Turbidity	ы	# 5ª0
Specific Conductivity	IJ	H
Dissolved Oxygen	N	± 6 ° 6
Total Dissolved Solids	ЬJ	± 10° •
Oxidation-reduction potential	tu	± 20 mV

Geosyntec⁵ consultants

PURGE INFORMATION:	Location Huntslinger Project Name WEATS COUTS Sample ID 612-6-01-180406
)	Staff Allelia Date 4/10/18 Sample Matrix: 1/2/2/07

6	K	
Sample Matr	Date	TIEST
e Mat	1	1
NX _	101	1
42	à	,
to		
1		

Vol (gal)	to gailons	Radius (ft) Radius (ft) to gallons	Radius (fl)		Letel (ft)	Depth (ft) Level (ft)
One Casing	Covert feet One Casing	Well	Well	P.	Water	Well
	eted	Time Completed			cter	Casing Diameter
	fter Purge	GW Level After Purge			epril.	Well Total Depth
7	to Dryness	Well Purged to Dryness			0	GW Elevation
	urged.	Total Vol. Purged			aced To	Level Referenced To
	0	One Casing Vol			Level	Initial Water Level
	epth (Pump Inlet Depth	-)	986	Tume Instructed
	(Y) X	Deducated	June	M	1	Purge Method
					-1	

Casteration Fr.	7	= 8T.	٠) * 3 14 *	· •
Date	Vol (gal)	to gallons	Radius (ft) Radius (ft) to gallons	Radius (fl)		Level (ft)
Meter Type	One Casing	Well Covert feet One Casing	Well	Pı Well	Ρı	Water
ENSTRUMENT DATA:						
INCTRINGENT DATA.		etted	Tume Completed			eter
		fter Purge	GW Level After Purge			ept.
1	Y	to Dryness	Well Purged to Dryness:			n
Comment and Observations		reed	Total Vol. Purged			nced To
Sample Characteristics		0	One Casing Vol			Level
Pressure Setting (psi)		pth (Pump Inlet Depth	-		080

SAMPLE
COLLECTION
V DATA:

Conductivity

4.49 mS/cm = 4.0 std

mS cm

Calibration By Servai #

Trip Blank Date:	Laboratory
Date	
Field Blank Da	
k Date	

Washing Conditions of Time of Camping	GENERAL INFORMATION:	

Field Monsurement	Replicates	Acceptance Limits
Temperature	22	± 0 5° C
рH	N	± 0,2 standard units
Turbidity	ŀJ	11 500
Specific Conductivity	ŀJ	H 7
Dissolved Oxygen	ы	± 6 • ₀
Total Dissolved Solids	ŀĴ	± 10°•
Oxidation-reduction potential	٤J	± 20 m√

PURGE DATA:

Oxidation-reduction potential				D T		ナ	12	MI		
Total Dissolved Solids	J	47					5	3	~	
Dissolved Oxygen										
Specific Conductivity		V								
Turbidity	138	6	から	20015	7.7 2 Slow 2 2 4.7	7,7	2			846
Гепрегацие	46	W	2,2	0.0015	6 22 0.0015 d.2	7.6	4:16			946
Field Mousurement	150	6	21.77.62.2 1.0015 2.5 (c	5100,0	2,2	7.6	4.16			HH
General Comments and Observations:	160	W	7	0,0015	22.1 7.2 2.20,005	7.2	22.1			OHO
GENERAL INFORMATION: Weather Conditions at Time of Samplin		(310)	Į	1/8			3	Removed	- +	
Trip Blank Date:	ORU	DO Turbidity	38] IJ	Conduct. TDS	1		Total Temp.	Purpe	Ĭ
SAMPLE COLLECTION DATE										

* EB

GROUNDWATER SAMPLING - PURGE & SAMPLE FIELD FORM

,	
•	ر ر
·	
	Č
	<u>ٽ</u>
7	5
•	
	—

Consultants

7.

Dedicated Y

VTION: Dedicate	Discharge Time (sec) Others (Serial = Calibration By 4.0 std = mS cm	ON DATA:	Freid Blank Date TION: f Sampling:	Vations	Replicates Accept	# # CO #	ı cı	r	т н :-	Ξ Jec	
SAMPLING INFORMATION: Sample Method	Water Level at Sampling: Pump Parameters Refill Time (sec): Pressure Setting (pst)	Comment and Observations INSTRUMENT DATA:	Meter Type Calibration Date Calibration PH: Conductivity	SAMPLE COLLECTION DATA:		General Comments and Observations:	Field Moustarement	Temperature	Turbidity	Specific Conductivity	Total Dissolved Solids	Oxidation-reduction potential	
		z.	One Casing Vol (gal)		ORP (mV)					4	7		
N	8	 	n		Terredicy (NTC)	0	0			Ú	γ		
298	>	Total Vol. Purged Well Purged to Dryness GW Level After Purge. Turne Completed:	Covert feet to gallons		D T	7:4	2,3	7.7		Œ	2		
Staff RL Date 5//4/ Sample Matrix	Dedicated: Pump Inlet Depth One Casing Vol	Total Vol. Purged Well Purged to Dryness GW Level After Purge Time Completed:	1			0.6	0.6	0.6		H			
Staff Date Sample	Dedocated: Pump Inlet One Casm	Total V Well P GW L	Well Radus (ft)		Conduct.	1.12	1:12	[13		1	K		
80514			Well Radius (ft)		Ħ	7.0	7.0	2.0		8	N		
081_80 05_180	N.					18:87.0	18.8	18.8		6	14		
8 P	Pump Pump Supp		(ft) P ₁		Total Volume Removed	_	7	4.5 18.8			11/1		
OVLC me VCEHD GW-C-GH	INFOR	enced To	Water Level (A)	DATA	Rate (0.5)		_			5	1		
Location OVLC Project Name VCE Sample ID GW-C-	PURGE INFORMATION: Purge Method Pump Time Initiated Street Stores	Level Referenced To GW Elevation Well Total Depth Casing Diameter	Well Depth (ft)	PURGE DATA	iii V	£ 48	448	8					

Acceptance Limits $\pm 0.5^{\circ} C$ ± 0.2 standard units

5.00

. 70 m/. ± 10° ₀ •, 9 ≠

CROFNONALIES SAMPLING - PURGE & SAMPLE FIELD FORM

Geosynteco

consultants

7

Dedicated

Discharge Time (sec)

Others (

SAMPLING INFORMATION: Sample Method	Water Level at Sampling Pump Parameters Reful Time (sec.) Pressure Setting (pst.) Sample Characteristics Connient and Observations	INSTRUMENT DATA: Meter Type Calibration Date Calibration PH 4.0 std Conductivity: 4 49 mS	SAMPLE COLLECTION DATA:	Laboratory Trip Blank Date: GENERAL INFORMATION: Weather Conditions at I une of Sampling	General Comments and Observations	Field Mousturment Re	Temperature pH	Turbidity Specific Conductivity	Dissolved Oxygen Total Dissolved Solids Oxidation-reduction potential	
		eg ileg		ORP (=V)					12	
	z >	One Casung Vol (gal)		Terbidicy (NTU)	_	O	0		9	
360	(V)	ner Purge Red Covert feet To gallons 18		DO (T)	5.1	1.2	1.4		4	
Staff Date S/1/4/	Pedicated Pump inlet Depth One Casing Vol Total Vol Purged Well Purged to Dryness	2 3		SE EX	0.59	0.59	0.59		1	
Staff Date Sample	Dedicated Pump Inlet One Casin Total Vol Well Purg			pH (sS/cm)	219 7.3 1.12 0.59	21.77.3 1.10 0.59			R	
80514		Well Radius (fl.)			7.3	7.3	21.57.31.10			
00075 18051	NO.	P ₁		<u>I</u> S	21.9	21.7	21.5			
2776 2478 2-03-1	WING		one!	Total Volume Removed					4	
Sw-e-	INFOR	Depth meter Water Water	DATA	Parte Rate					M	
Location Project Name Sample ID	PURGE INFORMATION: Purge Method Tune Intusted Initial Water Level Level Referenced To	Well Total Depth Casing Diameter Well Depth (ft) Le	PURGE DATA	į	1001	1010	1013			

cas can

4 49 mS cm =

Freid Blank Date

Serial # Calibration By

± 0.2 standard units

• (H 0 0 T

• 9 = ± 1000 \m 07 ±

Acceptance Limits ± 0 5° C

Replicates

CROL NOWALLR SAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntece

consultants

7

Dedicated

Discharge Time (sec)

Others (

Location VRWD Project Name VCEHD GWTS Sample ID GW- A-03 - 19.05/5 20 PURGE INFORMATION: Purge Method AMMP Inne Initiated Level Referenced To GW Elevation GW Level After P Time Completed
--

		son By		mS cm
	Serual #	Calibration B	- pus 0 +	4 49 mS cm =
NSTRUMENT DATA:	ype	alibration Date	Hd DOE	Conductivity
INSTI	Meter Typ	Calibrat	Calibration	

One Casang Vol (gal)

Covert feet to gallons

Well

Well

ď.

A ater

Well

Depth (ft) Level (ft)

Radius (ft) Radius (ft)

SAMPLE COLLECTION DATA:

Trip Blank Date:

GENERAL INFORMATION:
Weather Conditions at I time of Sampling
General Comments and Observations.

Field Moustarement	Replicates	Acceptance Limits
Гетрегайне	r i	± 0 5° C
ЬН	C1	± 0 2 standard units
Turbidity	ΓI	H A B
Specific Conductivity	C I	• c H
Dissolved Oxygen	L1	•, 9 ∓
Total Dussolved Soluds	C+	± 1000
Oxidation-reduction potestial	-1	1 20 m√

ORP (■V)				7	4		
DO Turkiding (mg/L) (NTU)	1	-	0	0	()h		
DO (mg/L)	9.5	9.0	0.8		#		
TDS (ppd)	Octobe	0.66	19:0		X		
Conduct. TDS (ppin)	1500 18,3 6,8 0.86 0,64 9.5	6.89	0.8 79:0 68:0		Q		
H	8.9	6.9	00		7		
I G	18,3	18.3	18.3 6.9		1		
Total Volume Remered	1500	2100 18.3 6.9 0.89 0.66	3000		THE STATE OF THE S	111	
Soc 3	000	_		1	4		
į	900 B00	902	306				

PURGE DATA:

CEOUNDA A FILE SAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntec

consultants

7

Dedicated

Discharge Time (sec)

· 2017-1107-1107-1107-1107-1107-1107-1107-	Discharge Time Others (Serual # Calibration 4.0 std **	ATA: Field Blank Date V:	Replicates	רז רז כז רז ו	רו רו רו
SAMPLING INFORMATION: Semple Method	Water Level at Sampling Pump Parameters Refill Time (sec) Pressure Setting (ps) Sample Characteristics Comment and Observations	INSTRUMENT DATA: Meter Type Calibration Date Calibration PH 4. Conductivity 4.	SAMPLE COLLECTION DATA: Laboratory Trip Blank Date GENERAL INFORMATION: Weather Conditions at Time of Sampling	General Comments and Observations. Field Measurement	Temperature pH Turbidity Specific Conductivity	Dissolved Oxygen Total Dissolved Solads Oxidation-reduction potential
		es in Section (legal)	ORP (BV)			
	z >	One Casing Vol (gal)	Turbidity (NTU)	00	0	2
GW	Cyness	led Covert feet to gallons	O (j.	9.6	4.4	147
A STATE OF THE PARTY OF THE PAR	Dedicated Pump ladet Depth. One Casing Vol Total Vol Purged Well Purged to Digness	Well Co	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			I I
Staff Date 5/15	Dedicated Pump Inle One Casm Total Vol Well Purg	Time Comp	Conduct.	6.7 0.43 0.7	0,93 0.7	
		Well Radius (ft)	H.	6.9	6.9	7
64175 005/15	ü Q	P. R. R. R.	Tag.	18,2	(2
	МАПО РКПР		Total Volume Removed	600 18,2 660 18,2	7300 16.	
VR3D	INFOR	Nater Level (A		300	7	
Location VR3D Project Name VCEHO Sample ID GW-9-02	PURGE INFORMATION: Purge Method PUMP Tune Instanted Instant Water Level Level Referenced To GW Elevation	Casing Diameter Well Na Depth (ft) Leve	H	406	926	

mS cm

Calibration By

± 0 2 standard units

0 0 ± . . . • 9 ≠ ± 1000 ₹ 20 mV

Acceptance Limits ± 0 5° C

CEOFTON AND RISAMPLING - PURGLAS AMPLE FIELD FORM

Geosyntec

consultants

1

Dedicated

Ducharge Time (sec)

Others (

Pressure Setting (pst)

ノメルクロ		Staff	1
oject Name VCEHA	ProTS	Date 57/	15/2018
ample ID 6,0-0-04	1000 K	Sample Matri	700

	SAMPLING INFORM	Water Level at Sampling	rempt recognitions	Description of the second	Section of the Sectio	Comment and Observations			
Date 5/15/2018	Sample Matrix (4/A)		Deducated . (Y) N	Pump Inlet Depth	One Casing Vol	Total Vol. Purged	Well Purged to Dryness Y N	GW Level After Purge	Time Completed
Project Name VCEHA OLUTS Date 5/15/2018	Sample ID Stor. A-07-1705 /5 Sample Matrix (5/1/2	PURGE INFORMATION:	Purge Method Pump	ime initiated 950	minal Water Level	evel Referenced To	GW Elecation	Well Total Depth	asing Diameter

bepth (ft) Level (ft)	٥	Radius (ft)	Radius (ft) Radius (ft) to gallons	to gallons	Vol (gal)
	* 71		*	87.	tr.

1			
-			
-			
-			
-		•	1
		4 4 (
		A THE P	Y
			7

ORO (**) TE (STE) 8 3 43 ත ම Conduct. TDS (mS/cm) (ppm) 700.94 0.7 9000 17.6 7.0 0.93 0.7 70,094 0.7 Ħ 17.7 Į. Rate Volume pa 1000 How 53 H

	Serial #	Calibration By	4.0 std -	Conductivity: 4.49 mS cm = mS cm
INSTRUMENT DATA:	Meter Type	Calibration Date	Calibration PH	Conductivity

DATA:		Freid Blank Date
SAMPLE COLLECTION DATA:	Laboratory	Trip Blank Date:

Weather Conditions at Time of Sampling

General Comments and Observations.

GENERAL INFORMATION:

Field Measurement	Replicates	Acceptence Limits
Temperature	٠,	× 0 5° C
Hd	rı	= 0 2 standard units
Turbidity	C1	9 4 11
Specific Conductivity	*1	* C H
Dissolved Oxygen	rı	* 9 *
Total Dussolved Solids	e i	± 10°°
Oxidation-reduction potential	••	\ m 07 ≠

Geosyntec

consultants

7

	Dedicated Y .	ne (sec)					Ma By	mS cm				The second secon		Acceptance Limits	± 0 5° C	\pm 0.2 standard wosts	0 0 × =	• CH	* 9 ±	± 100 •
	Ż	Discharge Time (sec)	Others (Serual #	1	4.0 std = 4.49 mS.cm =	DATA		Field Blank Date	N: nplang	0.5	Replicates	C 4	c1	eч	C ŧ	C1	Cŧ
	SAMPLING INFORMATION: Sample Method	Water Level at Sampling Pump Parameters Refill Time (sec)	Pressure Setting (pst)	Comment and Observations	INSTRIMENT DATA:	Meter Type	Date	Calibration PH Conductivity:	SAMPLE COLLECTION DATA:	Laboratory	Trip Blank Date:	GENERAL INFORMATION: Weather Conditions at I sane of Sampling	General Comments and Observations	Field Moussurmont	Temperature	Hd	Turbidity	Specific Conductivity	Dissolved Oxygen	Total Descrived Solids
	111		il	7.	11	000	(F)				ORP	Î				Ī				
		l:a		;-		One Casmo	Vol (gal)	n			Turbidiev	(MIC)			_	-				2
	3008	(<u>></u>		d Tyness	Purge	Correct fact	gallons	87 r			8		8.4	80	bt					1
D	Mamx	ſ	Pump Inlet Depth One Casing Vol	Total Vol Purged Well Purged to Dryness	GW Level After Purge Time Completed	ŀ	-	•			SE.	1-1	0.66	0.66	Octoba					
8	Date 5	Dedicated	One Ca	Vell P	GW Le	II-D	Radiuss (ft)				Conduct.		15.6 7.1 C.900.66 8.4	18-571 D. 800.66	19 11 71 0.84 Diblo	903				
						11.511	Radius (ft)			E	4		12	17	17	101	*		İ	7
	ONTS -1805/6	N 0				ļ		*			I amp	ઈ	<u>0</u>	18. 17. 18.	ja il	1001				
1751		MATIC	6101			Ö.	_	0.4 3.14			Total	Removed								00.
11/14/18	4-015 6-02-14	NFOR	Level	enced to	Septh leter	1	Level (A		ATA		Partie Date									V
	Project Name VCCAA Sample ID G100-A-61	PURGE INFORMATION: Purge Method / WMP	Time Initiated Initial Water Level	Level Referenced To GW Elevation	Well Total Depth Casing Diameter	0-11	Depth (ft)		PURGE DATA:		į		1636	1028	1020	200				

70 m√ ±

Oxadation-reduction potential

CROLED AND RESAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntec^o

consultants

54)	N (X)
Staff Alis Doe Staple Matrix	Deducated Pump ladet Depth One Casing Vol Total Vol Purged
Location LOBBA Project Name VCETTS Sample ID GW-F-CR-180515	PURGE INFORMATION: Purge Method Tume Instanted

Well	N ater	ď.	Well	Well	Covert feet	One Casing
pth (ft)	Depth (ft) Level (ft)		Radius (ft)	adrus (ft) Radrus (ft)	to gallons	Vol (gal)
		1			0°7 (

Well Purged to Dryness GW Level After Purge Time Completed

> Well Total Depth Casing Diameter

GW Elevation

, ater	ń.,	yell	Well	Covert feet	One Casing
Depth (ft) Level (ft)		Radius (ft)	Radues (ft)	to gallons	Vol (gal)
	4 7 1 4			97 r	041

_	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
10	
110	
1	
1	
1	
1	
1	
11	
	4
10	70
	PURGE DAT
Ü	
13	(5
1	\sim
Li.	
. 10	A

ORP (mV)			
DO Turbidity (mg/L) (NTU)	1		
D0 (mg/L)	4.4	7.7	3,9
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2	E1	1,2
Conduct. TDS (ppin)	1.52	151	159
7	6.7	ي 6	89
ŢS	上	世	11.968
Total Volume Removed			
Purge Rate			
į	1115	8	1120

Dedicated		Ê	Duscharge Time (sec)	Others ()		
SAMPLING INFORMATION: Sample Method	Water Level at Sampling	Pump Parameters	Refull Time (sec)	Pressure Setting (pst)	Sample Characteristics	Comment and Observations

1

	Serual ≖	Calibration By		mS cm
	Š	Ü	4.0 std	Conductivity 4.49 mS cm =
IT DATA:			PH	Conductivity
INSTRUMENT DATA:	Meter Type	Calibration Date	Calibration	

SAMPLE COLLECTION DATA: Laboratory

Freid Blank Date	
Trip Blank Date: Fre	GENERAL INFORMATION: Weather Conditions at Time of Sampling General Comments and Observations.

Field Monsterment	Replicates	Acceptence Limits
Temperature	٠,	± 0 5° C
Hd	r.	± 0 2 standard units
Turbidity	c i	0 0 2 2
Specific Conductivity	e 1	• · · · · · · · · · · · · · · · · · · ·
Dissolved Oxygen	ra	* 9 ±
Total Dussolved Solids	ei	≠ 10° •
Oxadation-reduction potential		7 ± 20 m \

Geosymtec[©] consultants

Water Level a Pump Parame Refull Press	Sample Chara Comment and	INSTRUM	Meter Type Calibration D Calibration	CANTEL	Laboratory Trap Blank Di	Weather Con General Com	Field Man	Temperati	pH Turbidaty	Specific C
Ī	2		Baring (sal)		ORP (a.V.)					
z	 		- n		Turbelin (NTU)	0	0	0		
(>)	Dyness Pure	72	covert fee		DO (TAC)	84	7.0	1		
feed Indet Dep	Vol. Purg Purged to	Complete			SE E	0.14	4.0	0.74		
Pump	Total Well GWI	Time			Conduct (uS/cm)		1.0			
			Well			69	1.7,	4.7		
NOS						18.6	18.1	18.9		
PUINT 20			-	80	Total Volume Removed					
INFO	renced Transition	Beter		DATA	Purge Rate					
PURGE Purge Med Trune Instal	Level Refe GW Eleval Well Total	Casing Du	Well Depth (ft	PURGE	į	1335	1338	148		
	PUMP PUMP 120	Deducated Pump Inlet Depth One Casing Vol Total Vol Purged Well Purged to Diviness Y N GW Level After Purge	Deducated Pump Inlet Depth One Casing Vol Total Vol Purged Well Purged to Divineas Y N GW Level After Purge Time Completed	Deducated Pump Inlet Depth One Casing Vol Total Vol Purged Well Purged to Dryness Y N GW Level After Purge Time Completed Time Completed Well Well Covert feet One Casing Radius (ft) Radius (ft) to gaillons Vol (gal)	Dedocated Pump Inlet Depth One Casing Vol Total Vol Purged Well Purged to Dryness Y N GW Level After Purge Time Completed Well Well Covert feet Well Well Well Well Covert feet Well Well Well Well Covert feet Well Well Well Well Covert feet Well Well Well Well Covert feet Well Well Well Well Well Well Well Wel	Deducated Pump lalet Depth One Casing Vol Total Vol Purged Well Purged to Diviness Time Completed Time Completed Time Completed Well Wiell Covert feet One Casing Radius (ft) Radius (ft) to gaillons Pumple one Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Wiell Covert feet One Casing	Deducated Pump later Depth One Casing Vol Total Vol Purged Well Purged to Diviness Y N GW Level After Purge Time Completed Time Completed Well Well Covert feet One Casing Radius (ft) Radius (ft) to gallons Vol (gall) Bell (Conduct. TDS DO Turbidity ORP Conduct. TDS DO Turbidity ORP	Deducated Your Purporth One Casing Vol Total Vol Purged to Diviness Y N GW Level After Purge Time Completed Covert feet One Casing Well Well Covert feet One Casing Well Well Covert feet One Casing Well Well Covert feet One Casing Sadus (ft) Radius (ft) to gallons Vol (gall) Application (page) (mg/L) (NIU) (mV) 6 6.9 1.0 0.744 8.4 0	Deducated Pump later Depth One Casing Vol Total Vol Purged Well Purged to Diviness Well Purged to Diviness GW Level After Purge Time Completed Time Completed Time Completed Well Well Well Well Covert feet One Casing Well Well Covert feet Time Completed Well Well Well Well Well Well Well Covert feet One Casing Well Well Conduct. TDS DO Turbidity ORP 66.9 1.0 0.744 7.0 0	Deducated (Y) N Pump laiet Depth One Casing Vol Total Vol Purged Well Purged to Dryneas Y N GW Level After Purge Time Completed Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Well Wiell Covert feet One Casing Aveil Well Completed Time Completed One Casing Well Wiell Covert feet One Casing Well Well Covert feet One Casing Aveil Well Conduct. TDS DO Turbidies ORP Location (Paper) (may L) (NTU) Location (Paper) (may L) Loc

Water Level at Sampling Pump Parameters Reful Time (sec) Pressure Setting (pai) Sample Characteristics Comment and Observations INSTRUMENT DATA: Meter Type Calibration Date Conductivity: 449 mS cm = mS cm SAMPLE COLLECTION DATA: Laboratory Trip Blank Date: GENERAL INFORMATION: Weather Conductors at Time of Sampling General Comments and Observations.	SAMPLING INFORMATION: Sumple Method		Dedicated	; ~
A: Serial # Calibration 4.0 std 1.0 std 1.0 std ATION: Field Blank Date ATION: cof Sampling e of Sampling	Water Level at Sampling Pump Parameters			
A: Serial # Serial # Calibration 4.0 std = Itv: 4.49 mS cm = ION DATA: Field Blank Date ATION: c of Sampling ervations.	Refull Time (sec)	Discharge Ime (w	()	
A: Serial # Calibration 4.0 std = Tiv: 4.49 mS cm = ION DATA: Field Blank Date ATION: c of Sampling	Pressure Setting (pst)	Others (
NT DATA: Seral # Calibration PH	Sample Characteristics			
NT DATA: Seral # Calibration PH	Comment and Observations			
Seral # Calibration PH 4.0 std Conductivity: 4.49 mS cm = LLECTION DATA: Field Blank Date NFORMATION: ons at Tune of Sampling mts and Observations.	INSTRUMENT DATA:			
Date PH 4.0 std Conductivity: 4.49 mS cm = COLLECTION DATA: E. COLLECTION DATA: AL INFORMATION: And thous at Time of Sampling minents and Observations.	Meter Type	Serial #		
PH + + 0 std = Conductivity: 4 49 mS cm = DLLECTION DATA: Field Blank Date NFORMATION: ons at Time of Sampling mts and Observations.	Calibration Date	Calibration By		
Conductivity: 4.49 mS cm = ILLECTION DATA: Freid Biank Date VFORMATION: as at Time of Sampling as and Observations.	Н			
Date: LINFORMATION: moditions at Time of Samplan minerits and Observations.			Scan	
AL INFORMATION: reditions at Time of Sampling	SAMPLE COLLECTION DAT	ſA:		
GENERAL INFORMATION: Weather Conditions at Time of Sampling General Comments and Observations.	Trp Blank Date:	Freid Biank Date		
General Comments and Observations.	GENERAL INFORMATION: Weather Condutions at Time of Sampla	9		
	General Comments and Observations.			ř
	Field Massachusens	Remicates A	Acceptance Limits	77347

Field Mossurment	Replicates	Acceptance Limits
Temperature	7 1	±05°C
Hd	r i	± 0 ≥ standard units
Turbidity	C1	0 ey ==
Specific Conductivity	C i	* C H
Dissolved Oxygen	Ċŧ	• 9 ≠
Total Dissolved Solids	C4	± 100 ⋅
Oxidation-reduction potential	~1	± 20 m/

CHOL NOWALLE SAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntec®

consultants

7

		Dedicated Y N	me (sec)					á		mS cm				The Mark and Street Land Company	Acceptance Limits	± 0 % C	± 0.2 standard units	0 0 ==	● ← H	• 9 =	93.1
	Ż		Ducharge Tune (sec)	Others (Serial #	4.0 std	4 49 mS.cm =	DATA:	Field Blank Date	N: moline	105	Remiceres		٠,	r i	٠,	r.	٢
	SAMPLING INFORMATION	Sample Method Water Level at Samplang:	Pump Parameters Refull Time (sec)	Pressure Setting (ps1)	Sample Characteristics Comment and Observations		INSTRUMENT DATA:	Meter Type Calibration Date		Conductivity	SAMPLE COLLECTION DATA:	Trip Blank Date:	GENERAL INFORMATION: Weather Conditions at Time of Sampling	General Comments and Observations	Field Messymmen	Temperature	Hd	Turbidity	Specific Conductivity	Dissolved Oxygen	Total Described Solids
				1		7.	ΙĨ	Sun Si	i d				Î								
			Z			سز		One Casing				Turbidity	(3 1 5)	0	0	C				-	2
	arcoel.	(Pures.		Covert feet	8+,			8		6.6	5.9	r S				7	
Q	S/18/			One Casmy Vol	Total Vol Purged	Well Purged to Dryness: GW Level After Purge	Time Completed	-	-			SE	<u></u>	19.06.9 1.02 0.75 6.6	14:0	DI W	-			1	ナ
	Sample Matrix		Dedicated	One Ca	Total	GW L	Tribe (Well				Conduct	(EXCE)	1.02	18.4 7.1 1.00 0.74	00				~	/
72	1							Well			t	=		6.9	7.1	12 70				5	_
min	1805 1805	ź						d.	 .			Tap	2	19.0	18.4	707	5				2
1 192	20%	T. C.	Jum P	1000		Î			1.314			Total Volume	Removed								5
1/1	OW TO	d Oziv	2 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	enced To	on Septh	Deter	A ater	⊣ :	DATA		Parte Rate								(1
e de de Jo	Project Name Sample ID 99	or DCr.	Purge Method	lantial Water Level	Level Referenced To	Well Total Depth	Casing Diameter	Well Death (ft)		PURCE DATA		Ĭ		1358	1400	1402	3			7	

• 9 = ± 1000 \w 07 ∓

Oxidation-reduction potential

CROWNED A SAMPLING - PURGE & SAMPLI FIELD FORM

Geosyntec^o

consultants

Dedicated

Conductivity: E COLLECTION Date: AL INFORMATIC AL INFOR	ORP OR (V	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 1 1 1 1 1 2 3 1 1 1 1 1 2 3 1 1 1 1	200 C. T. S. C. D. O. 25 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1 Condent. The DO CT 1 Condent. The DO CT 1 Condent. The DO CT 1 CONDENT CONDE	10000 F	17.5 6.8 19.3 6.9 16.3 6.9 16.3 6.9	1 12 2	PURGE DATA Pure Raic 837 840 840 840	
General Comments and Observations.		id	7.6	H±0	940	8	17.5			
Trip Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling		COTU)	2 (T)	8 J. S	Conduct.		T∰. (°C)	Total Volume Removed		Parte Rate
SAMPLE COLLECTION DAT Laboratory Tro Blank Date:			2	i					4	Pare
		- 0	87	1 1			1.1	1 1	T 18	
MENT DATA:	guse (leg	One Casing	Covert feet to gallons	Ž	Time Comp	Well Radius (ft)	1	ter P ₁		asing Diameter Well Water Depth (ft) Level (f
INSTRINGENT DATA.			Purge	GW Level After Purge Time Completed	GW Le				1 1	Vell Total Depth
Sample Characteristics Comment and Observations		 	Dryness	Total Vol. Purged Well Purged to Dryness	Total V					evel Referenced To
Pressure Setting (pat)	Ĩ			Pump Inlet Depth One Casma Vol	Pump In			833	•	une instanted
water Level at Sampling Pump Parameters Refull Time (sec)		Z	>	8	Dedicated	Ì	50	Pump		URGE INFOR
Simple Method User Level at Sampling										
SAMPLING INFORMATION			3008	Date S/16/2018	Date Sample	59	012081	Project Name V CHD 01275		roject Name VC
				RL	Staff RL		CIT.	DVING	-	LA

Pump Parameters Refill Time (sec) Pressure Setting (ps) Sample Characteristics	Duscharge Time (sec)	(Jee) eg
Refill Time (sec) Pressure Setting (psi) Sample Characteristics	Duscharge In	الله (الهال)
Pressure Setting (ps.) Sample Characteristics		
Semple Characteristics	Others ()
Comment and Observations		
COMMENTER SEE COMMENTER SEEDING		
INSTRUMENT DATA:		
Meter Type	Serial #	
Calibration Date	Calibration By	A B,
PH	4.0 std -	
Conductivity	4 49 mS cm =	ras can
SAMPLE COLLECTION DATA:	ATA:	
Trip Blank Date:	Freid Blank Date	
CENERAL INFORMATION	,	
Weather Conditions at Time of Sampling	plang	
Field Moustanment	Replicates	Acceptence Limits
Iemperature	r a	≠ 0 5° C
Hď	c i	± 0.2 standard units
Turbidity	c i	0 0 0 0
Specific Conductivity	e e	· C H
Dissolved Oxygen	e i	+ 6 •
Total Dusotved Solids	n)	± 100 •
	-	1 - 00

CROL NO MATTRISANIPLING - PURGLAS SAMPLI FIELD FORM

Geosynteco

consultants

7

Dedicated

Discharge Time (sec)

	SAMPLING INFORMATION: Sample Method	Water Level at Sampling Pump Parameters	(bed) E	Sample Characteristics Comment and Observations		INSTRUMENT DATA: Mete Type	Calibration Date Calibration PH 4.0 std Conductivity: 4.49 mS.	SAMPLE COLLECTION DATA:	Laboratory Trp Blank Date: Freb	GENERAL INFORMATION:	Weather Conditions at Time of Sampling	Central Compens and Costs valous	Field Measurement	Temperature	pH Turbidity	Specific Conductivity	Dissolved Oxygen Total Dissolved Solids	Oxidation-reduction potential	
Staff AL Date Style 1/8	SUSIL Sample Maint	Dadoned Y	Pump Inlet Depth	Total Vol Purged Well Purged to Dryness Y N		Well Covert feet One Casing	Raduss (ft) to gallons Vol (gal)		S	PH (Conduct. 1125 LD) Littrement Office (mc/L) (NTU) (mV)	3/6	0.78 8.7	[11 0,78 8.4 O	1.1 0.778.3	10 0.778.3 O			1107	
VEGA OWI	1-40-9-1	PURGE INFORMATION: Pure Method Output	Time Intrated 105.7	0	Well Total Depth	Well Water P. Well	f) Level(ft) Ra	PURGE DATA:		Volume Temp.	50	0-11-18-87 1 18-8 7.1 1-0	101 1 1887,1	1103 3 18.87	1105 14 18.87.1			TOWWIS	

mS cm

4 49 mS.cm =

Field Blank Date

Serial # Calibration By

, 1

Acceptance Limits = 0 5° C

Replicates

 \pm 0 2 standard units 0 0 1 # C #

± 1000 • 9 =

70 m√

CROFTED AATHR SANIPLING - PURGE & SANIPLE FIELD FORM

Geosyntec^o

ON: Dedicated Y N Discharge I ime (sec)	Serial = Calibration By 4.0 std = mS cm	Field Blank Date	### ##################################	= 6.0 m/ = 20 m/
SAMPLING INFORMATION: Sample Method Water Level at Sampling Pump Parameters Reful Time (sec) Pressure Setting (psi) Sample Characteristics Comment and Observations	INSTRUMENT DATA: Meter Type Calibration Date Calibration PH 4.0 std Conductivity: 4.49 mS SAMPLE COLLECTION DATA:	Laboratory Trip Blank Date: GENERAL INFORMATION: Weather Conditions at Time of Sampling General Comments and Observations	Field Measterment Temper ature pH Turbidity	Specific Conductivity Dissolved Oxygen Total Dissolved Solids Oxidation-reduction potential
Staff Date Sample Matrix Deducated Pump lalet Depth One Casing Vol Total Vol. Purged Well Purged to Dryneas Y. N. GW. I seel After Purge	Time Completed Well Covert feet One Casing Radius (ft) to gallons Vol (gal) * 18 =	COLUMBIA (MCL.) (NTU) (MV) Solution (MCL.) (NTU) (MV) O O T O O S	70,7 8.9 4 40,78.90	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RMATION:	Vater P: Well vel (ft))* 3 14 * A:	Rate Volume (CC) PH Conduct. (Ann Removed (CC) PH (uSica)	300 20.2 7.5 0.97 0.7 1 400 19.9 7.3 0.94 0.7	Summer
Location Project Name Vice Sample ID G. C. Purge Method I une Intuited Inntal Water Level Level Referenced To GW Elevation	Casing Diameter Well Na Depth (ft) Leve	1. IH20	1420	

CROCKDAAITESAMPLING-PURGE&SAMPLEFIELDFORM

Geosyntec^o

consultants

A2	8117118	Sample Matrix Weter
Staff	Date	F Sampl
181 Seasts	VLEHO OWITS	W-C-64-06-18051
Location (9)	Project Name V	Sample ID A

FURGE INFORMATION: Purge Method PUMP Time Initiated Innitiated Mater Level Investment Construction CW Electron Owners Well Total Denth GW Electron Owners

Raduss (ft) to ga	art feet	One Casing Vol (gal)
3	1	*
Well dus	2 8	(ft) to gallons

U

į	Parte Rate	Total Volume Removed	Į ė	Ę	Conduct. TDS (mS/cm) (pp/s)	E 1 6	8 <u>f</u>	DO Turbelity (mg/L) (NTU)	ORC ORC
815			17.7	7.1	27 71 1.6	1.2	81	R	
80			4.71	7.1	1.6	71	8.1	7	
8 30			17.4	174	1.6	6.7	79	7	
				7				α	5
		D		11	5		7		
)								

SAMPLING INFORMATION: Sample Method

Water Level at Sampling Pump Parameters Refull Time (sec) Pressure Setting (pst) Sample Characteristics Comment and Observations	ing Ducharge Time (sec)	ing (psi) Others ()	ations
---	-------------------------	----------------------	--------

INSTRUMENT DATA:

Serial #	Calibration By		m2 8 m
Ser	C	1	11 12
		4.0 std	4 49 mS.cm =
		PH	Conductivity
Meter Type	Calibration Date	Calibration	

SAMPLE COLLECTION DATA:

	Freid Blank Date			
		GENERAL INFORMATION:	Weather Conditions at Time of Sampling	General Comments and Observations.
Laboratory	Trip Blank Date	GENERAL IN	Weather Condition	General Comments

Field Monstroment	Replicates	Acceptence Limits
Temperature	:64i	±03°C
Hq	r.ı	± 0 2 standard units
Turbidity	ei	0 ey =
Specific Conductivity	~1	- C H
Dissolved Oxygen	ri	• 9 ±
Total Desolved Solids	r i	≠ 1000
Oxadation-reduction potential		7 m 07 ∓

CEOF STATER SAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntec

consultants

RL	5117/2018	atrix water
Staff	Date	Sample M.
Location GIRL SCOUTS	Project Name VC CHD OUTS	Sample ID GW - D-07 - 1805/7

Location CIRL SPOUTS	Staff NC
Project Name VC CHD OWTS Dave 5/17/2019	Date 5/17/2018
Sample ID GW - 0-07 - 1805/7 Sample Matrix 100 for	Sample Matrix Watton
PURGE INFORMATION:	
Purge Method Fump	Deducated (Y) N
Ime Intuited 840	Pump Inlet Depth
Initial Water Level	One Casing Vol
Level Referenced To	Total Vol Purged
GW. Elevation	Well Purged to Dryness Y N
Well Total Depth	GW Level After Purge
Casing Diameter	Time Completed

Well	A ater	P ₁	Well	Well	Covert feet	One Casing
Depth (ft) Level (ft)	Level (ft)		Radius (f)	Ladrus (ft) Radras (ft) to gallons	to gallons	Vol (gal)
1	1	* 11 %			**************************************	

1

PURGE DATA:

0RP (=V)					7		
DO Turbiding		1			שכ	500	
DO (T)	2.6	4.9	4.7				
SE TA	1.3	1.3	1.3			41	
Conduct. TDS (sym)	1.7	1.7	1.7		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\overline{Q}	
핓	16.5 7.11	16.57.21.7	F. 6. 5 7.3 1.7		,	W.	
Ţe	16.5	16.5	9.91		C	11	
Total Volume Removed					100	HIII	
Pare Sar					\bigvee		
į	845	448	850				

Sample Method	Dedicated	;_
Water Level at Sampling:		
Pump Parameters		
Refill Time (sec)	Ducharge Inne (sec)	
Pressure Setting (ps.)	Others (
Sample Characteristics		
Comment and Observations		

4 49 mS cm = 4.0 std Conductivity 五 Meter Type Calibration Date Calibration

INSTRUMENT DATA:

Sersal # Calibration B;

	Freid Blank Date
Laboratory	Trip Blank Date:

SAMPLE COLLECTION DATA:

GENERAL INFORMATION:	Westher Conditions at Time of Sampling	General Comments and Observations

Field Mouseurement	Replicates	Acceptance Limits
Temperature	o t (4)	±05°C
Hq	r.ı	± 0 2 standard units
Turbidity	ev	1 580
Specific Conductivity	e i	• F H
Dissolved Oxygen	rı	* 9 ≠
Total Dussolved Solids	n	≠ 1000
Oxidation-reduction potential	-1	₹ 20 m

Geosyntec consultants

TELDFOR
IELDF
HLD
-
4
SAMPLE
7
4
<u></u>
(RGE
<u> </u>
<u>.</u>
Ġ
Ž
MELIN
ij
7
1
24
Ξ
-4
* :
Y () .
¥C:\ 1

Z, Well Purged to Dryness Staff RL Date 5/17/2018 GW Level After Purge ż Total Vol Purged Pump Indet Depth One Casmg Vol Sample Matrix Deducated Stone? Project Name VCEHO CUOTS Sample ID GW-G-01-180517 HUNTSINGER PURGE INFORMATION: Purge Method 987 Level Referenced To Initial Water Level Well Total Depth GW Elevation Location

Calibration PH	Well Death (ft)	Well Tater	α,	Well Radius (f)	Well Raduss (ft)	Radius (f) Radius (ft) to gallons Vol (gal)	One Casung Vol (gal)	Meter Type Calibration Date	deter Type
	1		* 11 % *			93 1		Calibration	PH

Time Completed

Casing Diameter

PURGE DATA:

A DATA:	Frek TON: Sempling	Ricons	Rep					_
SAMPLE COLLECTION DATA:	Laboratory Trap Blank Date: GENERAL INFORMATION: Weather Conditions of Lime of Sampling	General Comments and Observations.	Field Moussormont	Temperature	pH Turbidaty	Specific Conductivity	Dassolved Oxygen Total Dassolved Solids	Oxidation-reduction potential
	ORP (■V)						1	
	PH (Conduct. TDS DO Turbidity (MTU)	8	d					X
	00 (T)	2,2	2.3				9	
	SE P	0.73	元0				4	F
	Conduct.	21.87.6 1.05 a73 2.2	1.070.74 2.3					
		3.8	2	2				3
	Temp.	21.8	2227					
	Total Volume Removed							
DAIA	Purge Rate					,	S C	1/1
PURGE DATA	į	thb	De					

Water Level at Sampling Pump Parameters Refill Time (sec) Pressure Setting (psi) Others (Dedicated	edicated
(96)		
Jet)		
	Discharge Time (sec)	() 36
	Others (_
Sample Characteristics		

4 49 mS:cm = 4.0 std onductivity.

ELS CED

Calibration By

Serval #

	ii.
	seld Blank D
	1
Control of the last	
	Date
Laboratory'	Trip Blank

Weather Conditions at Time of Sampling GENERAL INFORMATION: General Comments and Observations

Field Monstroment	Replicates	Acceptance Limits
Temperature	r.ı	± 0 3° C
Hd	eu.	± 0.2 standard units
Turbidity	æ	0 g y ==
Specific Conductivity	eı	# H
Dissolved Oxygen	rų	*. 9 ±
Total Dussolved Solads	rı	± 100 •
Oxidation-reduction potential	7)	7 70 m√

CROL STATER SAMPLING - PURGE & SAMPLE FIELD FORM

Geosyntec®

consultants

Sample Characteristics Comment and Observat INSTRUMENT D.	Meter Type Calibration Date Calibration PH Conf	SAMPLE COLLE Laboratory Trp Blank Date: GENERAL INFO	General Comments and	Field Monsuranon	Temperature oH	Turbidity	Specific Conductivi	Dissolved Oxygen
	esung [sal]	ORP (BV)						
 	n .	(NTC)	0	0	0			
Dryness Purge	overt feet gallons	00 (T)	5,9	5,6	5.5			<
ol Purged to I		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.3	(13	(,3			
Total V Well P GW Le		Conduct.	4:	4.1	(17			
	Well		8.9	6.9	6.9			
		I	出	17.7	17.7			
8	± €	Total Volume Removed	3	100	0			(
enced To	Level	8	-0.75	-				
evel Refer W. Elevan Vell Total	Well Depth (ft)	i	thal	6401	1051			
		(f) Radius (f) Radius (f) Togallons Vol (gal)	Total Vol Purged Time Completed Time Completed Time Completed Time Completed Time Completed Total Well Well Covert feet One Casung Vol (gal) Vol (gal) Volume (C) PH (Conduct. TDS DO Turbedity Volume (C) PH (ms/cm) (pp.) (ms/L) (MTU) (mn/V)	Total Vol Purged Well Purged to Dryness GW Level After Purge Time Completed Time Completed Time Completed Well Reduce (ft) to gaillons Vol (gail) Vol (gail) Vol (gail) School (C) Removed CC) PH (Conduct. TDS DO Terbedity (RTU) School (C) Schoo	Total Vol Purged Total Vol Purged Well Purged to Dryness GW Level After Purge Tome Completed Tome Completed Tome Completed Tome Completed Total Vol Purged GW Level After Purge Tome Total Well Covert feet One Casing Vol (gal) Vol (gal) School (C) PH (Conduct. TDS DO Turbudity ORP School (C) Total Vol Purged Well Purged to Dryness Well Purged to Dryness GW Level After Purge GW Level After Purge Total Vol Purged GW Level After Purge Total Vol Purged GW Level After Purge GW Level After Purge Total Vol Purged GW Level After Purge Total Vol Purged GW Level After Purged Total Vol Purged GW Level After Purged Total Vol Purged GW Level After Purged GW Level After Purged Total Vol Purged GW Level After Purged Total Well Well Concert feet Total Vol Purged Total Vol (Earl) Total Vol (Total Vol Purged Total Vol Purged Well Purged to Dryness Y N GW Level After Purge Teme Completed Teme Completed Well Wiell Covert feet One Casung Well Radus (ft) to gallons Volume CC) PH (Conduct. TDS DO Turbidity ORP Semeword CC) PH (uSicm) (ppd) (mg/L) (NTU) (mV) A 177 6.9 1.7 1.3 5.9 0 GW Level After Purge Total (aSicm) (ppd) (mg/L) (MTU) (mV) A 177 6.9 1.7 1.3 5.5 0	Total Vol Purged Well Purged Obyness Y N GW Level After Purge Tame Completed Tame Complete	

Water Level at Sampling Pump Parameters Refill Time (sec) Pressure Setting (psi) Sample Characteristics Comment and Observations INSTRUMENT DATA: Meter Type Calibration Date Conductivity: 4.0 std Conductivity: 4.49 mS cm = mS c Laboratory Laboratory Field Blank Date: Field Blank Date	
A: 4.0 std ity: 4.49 mS cm ION DATA: Field E	ime (sec)
1 2 2	(m, 14) (1) (m)
SAMPLE COLLECTION DATA: Laboratory Trip Blank Date: Field Blank Date	noor By
GENERAL INFORMATION: Weather Conditions at Time of Sampling General Comments and Observations	
Field Measurement Replicates	Acceptance Limits
Temperature	± 0 5° C
Hd.	± 0 2 standard units
Turbidaty	0 0 7 =
Specific Conductivity	• C H

• 0 p = ± 100 € > 20 m

> Oxadahon-reduction potential Total Dissolved Solids

CROUND AND RISAMPLING - PURGER SAMPLE HELD FORM

Geosyntece

consultants

SA	W.a.	San		× :-	1	
Staff Date 5/17/201 Sample Matrix MR	Dedicated N N Pump Inlet Depth	One Casing Vol	Total Vol Purged	Well Purged to Dryness	GW Level After Purge	Time Completed
Location OPPIR Staff Project Name VCGHD 02075 Date 5 Sample ID 61070-055-1805/7 Sample Mai	PURGE INFORMATION: Purge Method Time Instanted	Initial Water Level	Level Referenced To	GW Elevation	Well Total Depth	Casing Diameter

Rate Volume (C) PH (Conduct. TIPS Rate (Volume (C) PH (Conduct. TIPS 3/L (P) PH (Conduct. TIPS 3/L (P) PH (Conduct. TIPS 1/L P) PH (CONDUCT. TIPS										
18.6 73 2.0 1.5 18.2 74 1.9 1.5 18.1 7.3 1.9 1.4 18.17.4 1.9 1.4	į	Rate _	Total Volume Removed	Į.	A	Conduct.	S 1	DQ (T)	DO Turbulity (MTU)	ORP (mV)
74 1.9 1.5 7.3 1.9 1.4 7.4 1.9 1.4	1153			18.6	73	2.0	L L	心		
1157 18,17,3 1.9 1.4 3	1155			18.2	4%	6.1	S'	3.9	7	
1159 1817.41.91.4 2	1157			18.1	7.3	5:	h!	3.0		
	1159			100	7.4	67	1.4	2.9	1	

A I I U.Y.: Dedicated			Duscharge Time (sec)	Others ()	
Sample Method	Water Level at Sampling	Pump Parameters	Refill Time (sec)	Pressure Setting (psi)	Sample Characteristics

	Senal #	Calibration By		CEN ENS CEN
			4.0 std	4 49 mS cm =
VT DATA:			PH	Comductivity
INSTRUMENT DATA:	Meter Type	Calibration Date	Calibration	

	k Date
	Field Blani
	k Date
poration,	rtp Blank

SAMPLE COLLECTION DATA:

Serio V	9	Replicates Acceptance Li	2 ± 0 5° C	- mapaged () +
GENERAL INFORMATION: Weather Conditions at I ame of Sampling	General Comments and Observations.	Field Moustantment	Гепрегание	17"

Field Moustarement	Replicates	Acceptence Limits
Тетрегание	r a	± 0 5° C
Hq	r i	± 0 2 standard units
Turbidity	Cł	2 500
Specific Conductivity	ſΙ	• · · · · · · · · · · · · · · · · · · ·
Dissolved Oxygen	rŧ	• 9 ∓
Total Dussolved Solids	Сŧ	± 100 •
Oxidation-reduction potential	^1	z 20 m/

CROF NOWALLES SAMPLING - PURGL & SAMPLI FIELD FORM

Geosyntec

consultants

	Ċ
Location Oute	Staff X
Project Name VCEHD CLUTS	Date 5/17/18
Sample ID G.W-E-03 _ 1805/7 Sample Matrix 1,232 Jen	1
	OES.
PLEAST INFORMATION:	Water
Pure Method	Dedicated N Pump
Tune Installed 1320	Pump Inlet Depth
Initial Water Level	
Level Referenced To	Total Vol Purged
(FW Elevation	yness Y N
Well Total Depth	GW Level After Purge
Casing Dumeter	Time Completed

Well	A ater	<u>ب</u>	Well	Well	Covert feet	_
epth (ft)	Depth (ft) Level (ft)		Radius (f)	Radius (ft) Radius (ft)	to gallons	Vol (gal)
		11.			8T . *	

'n	
1	
1	
1	
1	
1	
1	
i.	
	-
1	
1	
	-
	Æ
10	C
į.	ã
-	PURCE DATA
	5
-	

	ĺ			
	1			
	ı			
	ı			
	ı			
	l			
	l			
•	ĺ			
_	l			
-	i			
	Ì			•
	ì		E	_
	ŀ		•	4
			6	
	ŀ		ſ	•
	+		(
	İ		•	1
	ł		2	7 7 7 - 7
	è		•	

ORP (mV			
DO Terrolley (MTU)		9	
DO (mg/L)	3	8	Ç
S I J	1.2 0.81	0.81	1,20.79
Conduct. TDS (BS/CB)	-	22,373 1,2 0.81	1,2
Ą	157166	73	7.3
į 6	93,1	22.3	32,17,3
Yolume Removed			
Pare Rate			
į	1336	1328	1330

Sample Method		Dedicated
Water Level at Sampling		
Pump Parameters		
Refill Time (sec)	Discharge Time (sec)	(3ec)
Pressure Setting (pst)	Orthers ((
Sample Characteristics		
Comment and Observations		

1

mS cm Calibration By Serval # 4 49 mS cm = 4.0 std Conductivity INSTRUMENT DATA: 문 Meter Type Calibration Date Calibration

DATA:		Freid Blank Date
SAMPLE COLLECTION DATA:	Laboratory	Trip Blank Date:

GENERAL INFORMATION:	Weather Conditions at Time of Sampling	General Comments and Observations.

3

23.173 1.2 O.81

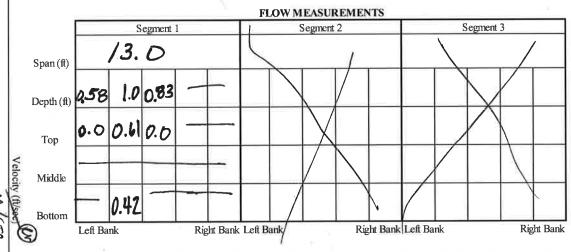
1332

];[

Geosyntec

7
بخا
LIEL
PLI
PL
4
~
1
J
K
_
а,
'
S
FL
-
7
~
<u> </u>
_
4
ا
Ţ.
, 4
. ′
Ξ
_

	<i>y</i>	1 V 4 e						#		r Limits	ن ن د	ard waits	•ر
	Dedicated	De (sec)			By By By BS CE					Acceptance Limits	± 0 % C &	± 0.2 standard units ± 0.2	. C H
	₩	Ducharge I me (sec)			Serial ** Calibration By 4.0 std ** 4.49 mS cm ** m'	VIA:	Freid Blank Date	jung .		Replicates	ra d	ti ci	· e
	SAMPLING INFORMATION:	Water Level at Samplang Pump Parameters Refill Time (sec)	Sample Characteristics Comment and Observations	INSTRUMENT DATA		SAMPLE COLLECTION DATA:	Laboratory Trip Blank Date:	GENERAL INFORMATION: Weather Conditions at Time of Sampling		Field Measurement	I emperature	pH Turbidity	Consider Construction
ı	SAN	Wate Pump	Samp			SAN	Labo ORP Trip	T		12	F	a H	
	3	.			One Casing Vol (gal)		Tarket						
	100 K	(x)	d d	Purge	Covert feet to gallons		1 00		4.8	6.0	E C	5	
8	or M	Depth	One Casing Vol Total Vol Purged Well Purged to Dryness	GW Level After Purge Time Completed			SE J	3/2	138.0 cil		0.88		
Staff	Sample Matrix	Deducated Pump inte	One Car Total V	GW Le Time C	Well Radius (ft)		PH Conduct.		4	5	1		
	100				Well Radius (ft.)				2001 6.4	20.2 6.6 1.2	20.26.6		
Ó	180	Z O			100000		Ţ		2001	20.2	130.7		
S	1007 1003	PURGE INFORMATION: Purge Method Internal Internal			er P:		Total Volume	Removed					
Moss	Sample ID (2003-6	NFOR S	Initial Water Level Level Referenced To	Well Total Depth Casing Diameter	Nater Level (ft	PURGE DATA:	Part of	•	98 9				
Location	Project Name Sample ID	PURGE IN Purge Method	Initial Water L Level References GW Elevanon	Well Total Depth Casing Diameter	Well Depth (ft)	GE	ì	1	2	7	20		


± 100 € 1 20 m√

Oxadation-reduction potential Total Dussolved Solids

SURFACE WATER SAMPLING - FIELD FORM	
Location: FOSTER BARK Staff: W	PHUSTIG
Project Name: VCEND ONTS STUDY Date: 8/23	5/17
Sample ID: SW-03-D-170825	00
FIELD OBSERVATIONS	P-83
Weather Conditions Clear, Partly Cloudy, Overcast, Fog, Smoky, Hazy Air Tem	p: degrees F
Water Condition: None, Oil, Grease, Scum, Solids, Sludge Deposits, Trash, Algal Bloo.	ms, Foam, Other
Water Clarity: Clear (see bottom) Cloudy (>4" vis) Murky (<4" vis)	
Water Color: Colorless Green, Yellow, Brown	
Water Odor: None Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Observations: ACTIVE RECLEATION U	PSTREAM ~ 1004DS
8 ×	
SAM PLE DETAILS	1
Grab Sample	
Sample Time: 15:00 Number of Sample bottle	es:
Approx. Sample Depth (Meters): 0.5 ft	
INSTRUMENT DATA	
Meter Type: <u>Y51556</u> Serial #:	15M100686
Calibration Date: 4.25.4 Calibration By:	·// ·
Cambration Date: Cambration By.	9 V

FIELD MEASUREMENTS

_	1	2	(3)	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	20.61	20.60					± 1.0° C
pH (s.u.)	20.61 7.88	7.88					± 0.2 standard units
Specific Conductivity (mS/cm)	1.104	1.104					± 10 %
Turbidity (NTU)							± 5%
DO (mg/L)	11.75	11:58					± 6 %
Total Dissolved Solids (g/L)	/			2			± 5%
Oxidation-reduction potential (mV)	/	1/					± 20

Note:

For surface water sampling locations, "Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8.", the flow is too high for measurement due to safety concerns.

A.5 SOPs

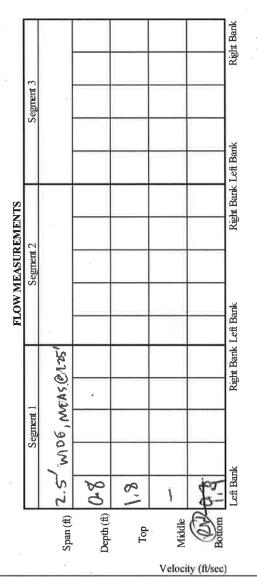
Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

SURFAC	SURFACE WATER SAMPLING - FIELD FORM	
Location:	SW-03-U_	Staff: P. LUSTIG, P. HILSON
Project Name:	IC EMD ONTS	Date: 9.101.17
Sample ID:	SW-03 SV-03-1 1 170919	Time: :00
FIELD OBS	FIELD OBSERVATIONS	. !
Weathe r Co	Weather Conditions: Clear Partly Cloudy, Overcast, Fog. Smoky, Hazy	Air Temp: 76 degrees F
Water Condition:	ition: None, Oil, Grease, Scum, Solids, Sludge Deposits, Trash, Algal Blooms, Foam, Other	ash, Algal Blooms, Foam, Other
Water Clarity:	ty: Clear (see yottom) Cloudy (>4" vis) Murky (<4" vis)	
Water Color:	r: Eolorless) Green, Yellow, Brown	
Water Odor:	(None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Signi	Other Significant Observations:	
SAM PLE DETAILS	ETAILS	×
Grab Sample	¥	
Sample Time:	12:30	Number of Sample bottles:
Approx. San	Approx. Sample Depth (Meters): 0.5	
INSTRU	INSTRUMENT DATA	
Meter Type:	151 SSV	Serial#: 15M 100 686
Calibration Date:	9.1A.17	Calibration By: R.L.

FIELD MEASUREMENTS

					í	Sample	Acceptance
	1	2	(3)	(4)	(5)	Median	Limits
Tempature (°C)	16.30	16.29	16.20	16,30	16.30 16.29 16.29 16.30 (6.30 16.30	16.30	± 1.0° C
pH (s.u.)	7, 80	7.55	4元	ナル	4.80 7.55 THE 7.129 7.39 7.14	出土	± 0.2 standard units
Specific Conductivity (mS/cm) 1009 1.005 1.000 1.006 0998 1.005 = ±10%	6001	1.005	090-1	900'	8660	5001	≈± 10 %
Turbidity (NTU)	0	0	0	0	0	0	≠ 5%
DO (mg/L)	9.22	248	21/2	£6£	9.22 BUT 6.13 TAT 7.87 8.13	3.13	% 9 =
Total Dissolved Solids (g/L)	(÷ (1	l	1	l	% 5∓
Oxidation-reduction potential (mV)	1)	1	J	1	1	± 20

ent 3						Right Bank the velocity in feet s.
Segment 3 Segment 3						Note: For surface water sampling locations, "Do not wade in water where the estimated depth in feet times the velocity in feet one reaction is equal to or persecutions." The flow is too high for measurement due to safety concerns.
FLOW MEASUREMENTS Segment 2						Right Bank Left Bank KEN locations, "Do not wade in water where then 8" the flow is too high for
Segment 1	6, 16,28	1.0 0.45	0,1 0,5 0.5	1	0.1 0.3 0.3	REPLY REPLY REPLY BICE water sampling location and is equal to or greater that
	Span (ff)	Depth (ff)	Top 0,1	Middle	Bottom	Note: For surface water
				Veloci	ty (ft/sec)


A.5 SOPs

the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5. Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of

SURFACE WATER SAMPLING - FIELD FORM	
Location: Gw-03-D	Staff: R. WILSON / R. WSTIP
ame:	Date: 9,70, 17
Sample ID: 5 W-03-0-170920	Time: [100
Weather Conditions: Clean, Partly Cloudy, Overcast, Fog. Smoky, Hazy	Air Temp:
Water Condition: None Oil, Grease, Scum, Solids, Sludge Deposits, Trash, Algal Blooms, Foam, Other	Irash, Algal Blooms, Foam, Other
Water Clarity: Clear (see bottom) Cloudy (>4" vis) Murky (<4" vis)	
Water Color: Colorless Green, Yellow, Brown	
Water Odor: None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Observations:	
	20
SAMPLE DETAILS	
Grab Sample	
Sample Time: 1,20	Number of Sample bottles:
Approx. Sample Depth (Mercrs):	
INSTRUMENT DATA	
Meter Type: V51 556	Serial #: 15M180686
Calibration Date: 9.26.17.	Calibration By:

FIELD MEASUREMENTS

	1	2	(3)	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	16.34 16.38	16.38					± 1.0° C
pH (s.u.)	8.06 7.98	867					± 0.2 standard units
Specific Conductivity (mS/cm) 1, 1 \le 1, 1 \le	1.15	511					± 10 %
Turbidity (NTU)		.0==				-	∓ 5%
DO (mg/L)	26:01 62:11	26'01					% 9 +
Total Dissolved Solids (g/L)	\			/			± 5%
Oxidation-reduction potential (mV)	1	1	/				± 20

For surface water sampling locations, "Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8.", the flow is too high for measurement due to safety concerns. Note:

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

Location:	W-04-D	Staff: R. LUSTIG	
Project Name:	VCEHD OLUTS	Date: 4/2/2018	
Sample ID: SW	04-D-180402	Time:	
FIELD OBSERVA	TIONS		
Weather Conditions	: Clear, Parth Coudy, Overcast, Fog, Smoky	y. Hazy Air Temp: degrees C	
Water Condition:	None, Oil, Grease, Scum, Folids, Studge De	degrees (
Water Clarity:	Clear (see bottom Cloudy (~4" vis) Murky (~		-
Water Color:	Colorless, Green, Yellow, Brown		
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed,	Other	
Other Significant Obs			
SAMPLE DETAILS			
Grab Sample	2 . 0		
Sample Time:	118	Number of Sample bottles	
Approx. Sample Depth (and the sumple offices	
NSTRUMENT D	ATA		
leter Гуре:		Senal ∉:	
alibration Date:		Calibration By:	

IELD MEASUREMENTS	1-7-12-5	1,	130	0.41	9,51	Sample • Median •	Acceptance Lunuts
	111.08	MAGI	14.93	.79	1, 14		= 1 () (
empature (°C)	797	74.72	7.98				± 0.2 standard units
oH (s a)	1.17	+. 1 +	1 300				± 1() ° o
specific Conductivity (mS cm)	1.344	1,344	52				50,
Turbidity (NTL)	51.4	50	4			V	t 6 %
DO (mg L)	14,2	10.2	9.2				± 5°°a
Total Dissolved Solids (g)	0.0011	Divoil	0.001				£ 20
Oxidation-reduction potential (mV)	154.5	149.4	147				

		FLO	MEASUR	EMENTS		Segmen	1 3
	Segment 1		Segment				
	17						
Span (It)							1
Depth (It)	1.4 0.6 0.5						
	1 a						
Тор							
	1.7		V				
Middle		1			1		
1	1.7						Right
Middle Bottom	Left Bank Ri	ight Bank Lett Ba	nk	Right	Bank Left B	lank	Kığııı

For surface water-sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8.7 the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5

${\bf SURFACE\ WATER\ SAMPLING\ -\ FIELD\ FORM}$

Location: Sou	LE	Staff:
Project Name:	VEHO DWITS	Date: 4/2/2018
Sample ID: SM-	05-D-180402	Time:
FIELD OBSERVATI	ons	
Weather Conditions:	Clear, Parth Coudy Overcast, Fog. Smoky. Hazy	Air Temp:degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits,	Trash, Algal Blooms, Foam, Other
Water Clarity:	Clear (see bottom) Cloudy (~4" vis) Murky (~4" vis)	
 Water Color:	Colorless, Green, Yellow, Brown	
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Obs	ervations:	
SAMPLE DETAILS		
Grab Sample		
Sample Time	//55 Numb	ber of Sample bottles
Approx. Sample Depth	(Meters):	
INSTRUMENT D	DATA	
Meter Type		Serial #:
Calibration Date:		Calibration By:

FIELD MEASUREMENTS

	1/,	>	úði	043	(5)	Sample Median	Acceptance Limits
Tempature (°C)	15.7	15.7					= 10 (*)
pH (< u)	8.3	8.3					± 0.2 standard units
Specific Conductivity (inS cm)	0.8	0.8					± [() 0/0
Turbidity (NTU)	784	790					= 50 ₆
DO (mg L)	10.7	8.8					± 6 %
Total Dissolved Solids	Da0007	0.0007					± 5°′a
Oxidation-reduction potential	133	131				1	± 2()

FLOW MEASUREMENTS Segment 3 Segment 1 Segment 2 Span (ft) Depth (ft) 0.7 Тор Velocity (ft/sec 0.8 Middle 0.2 Bottom Right Bank Right Bank Left Bank Right Bank Left Bank Left Bank

Note For surface water sampling locations, "Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 3.1" the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5

SURFACE WA	TER SAMPLING - FIELD FORM	
Location:	Of CAMP COMFORT	Staff: RL
Project Name:	VCEHO OWTS	Date: 4 2 2018
Sample ID: Su	0-04-4-180402	Time: /3:20
FIELD OBSERVATI	ONS	
Weather Conditions:	Clear. Partly Cloudy, Overcast, Fog. Smoky. Ha	zy Air Temp:degrees F
Water Condition:	None, Oil, Grease, Scum Solids Sludge Deposit	ts, Trash, Algal Blooms, Foam, Other
Water Clarity:	Clear (see bottom) Cloudy (>4" vis) Murky (<4" vis	
Water Color:	Colorless. Green, Yellow Brown	
Water Odor:	None. Sulfides, Sewage, Petroleum, Mixed, Oth	er
Other Significant Obs	ervations:	
SAMPLE DETAILS		
Grab Sample		
Sample Time:	/330 Nu	mber of Sample bottles:
Approx. Sample Depth	(Meters):	
INSTRUMENT I	DATA	
Meter Type:		Serial #:
Calibration Date:		Calibration By:

FIELD MEASUREMENTS

10	1	2	(3)	(4)	(5)	Sample Median	Acceptance Lanits
Tempature (°C)	15.8	15.9	15.9				± 1 0° C
pH(su)	7.9	7.9	8				± 0.2 standard units
Specific Conductivity (mS cm)	1.08	1.08	1.08				± 10 %
Turbidity (NTU)	272	261	266				± 5°°0
DO (mg·L)	8.2	7.8	7.6				± 6 %
Total Dissolved Solids (g/)	0.0009	0.0009	0.009				± 5%
Oxidation-reduction potential (mV)	192	182	177				± 20

For surface water sampling locations. "Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8", the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

Location:	OSTER PAPER	Staff: R. LUSTICS
Project Name:	VLAHD ONTS	Date: 4/2/3018
Sample ID: SW-C	13-D-180402	Time: 1420
FIELD OBSERVATI	ons	
Weather Conditions:	Clear. Parth Cloudy, Grenast. Fog. Smoky, Hazy	Air Temp: degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Studge Deposits,	Frash, Algal Blooms, Foam, Other
Water Clarity:	Clear (see bottom) Cloudy ('4" vis) Murky (4" vis)	
Water Color:	Colorless, Green, Yellow, Brown	
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Obs	ervations:	
	13 To 15 To	
SAMPLE DETAILS		
Grab Sample	1	
Sample Time: 19	125 Numb	er of Sample bottles
Approx. Sample Depth	(Meters):	
INSTRUMENT I	DATA	
Meter Type:		Serial #:
Calibration Date:		Calibration By

FIELD MEASUREMENTS

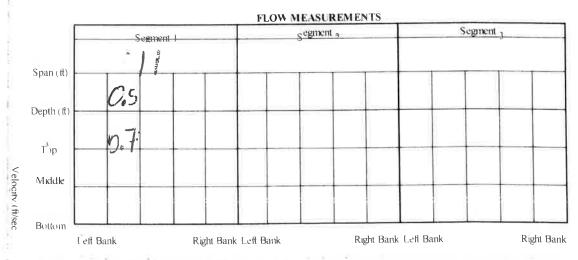
	1	2	(3)	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	16.6	16.6					=10.01
pH(su)	8.1	8.2					± 0.2 standard units
Specific Conductivity (mS cm)	0.9	0.9			- 100 34		± [() °,0
Turbidity (NTL)	/						= 5°
DO (mg L)	8.5	8.1					£ 6 % o
Total Dissolved Solids (p. 2)	0.0007	0.0007				-4.1	± 5%
Oxidation-reduction potential (mV)	197	193					F 20

		FLOW MEASUREMENTS								
		Segmen	t I	Segm		ent 2		Segment 3		
		75								
	Span (tt)	2	2				1			
	Depth (ft)	0.51.500	3							
	Гор	2.3								
Velocity (ft/sec	Middle	2.5								
v (ft/sec	Bottom	1.9								
1		Left Bank	Right Bank	Left Bank	ŀ	Right Bank Left	Bank	Right Bank		

Note — For surface water-sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8 ff, the flow is too high for measurement due to safety concerns.

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5



Location: 15	50/BURNHAM	Staff: RL	
Project Name:	YCEHD OWTS	Date: 4/3/18	
Sample ID: 51	V-01-D_180403	Time: 12 31	
FIELD OBSERV 41	TIONS		
Weather Conditions	Clean Partly Cloudy. Overcast. Fog. Smoky. Hazy	Air Temp:	degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Studge Deposits	s. Trash, Algal Blooms. Foam, Othe	r
Water Clarity:	Clear (see bottom) Cloudy (~4" vis) Murky (~4" vis		
Water Color:	Colorless, Green, Yellow, Brown		
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Othe	r	
Other Significant Ob	oservations:		
SAMPLE DETAILS			
Grab Sample			
Sample Time:	1231 Num	nber of Sample bottles	
Approx Sample Dept	h (Meters):		
TE CESTIFIC SOP			
INSTRUMENT	DATA		
Meter Гуре		Senal #:	
Calibration Date:		Calibration By	

FIELD MEASUREMENTS

,	ı	2	(4)	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	19	19.1					= ()° (*
pH (s u)	8.2	8.2					± 0.2 standard units
Specific Conductivity (mS cm)	1.02	1.02					± 10 °0
Turbidity (NTL) 248	74 R.	254					500
DO (ing L)	7.5	7.5					± 6 %
Total Dissolved Solids	(10008)	v.mos					± 5%
Oxidation-reduction potential (mV)	142	141					± 2()

Note For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8—the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

Location: 3	3/Sulphur	Staff: BL
Project Name:	VCEHO ONTS	Date: 4/4/18
Sample ID: SW-	-03-U_180404	Fime: 1211
FIELD OBSERVAT	TIONS	
Weather Conditions	: Clear. Partly Cloudy. Overcast. Fog. Smoky, Hazy	Air Temp:degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits.	Trash, Algal Blooms, Foam, Other
Water Clarity:	Clear (see bottom) Cloudy (~4" vis) Murky (~4" vis)	
Water Color:	Colorless. Green, Yellow, Brown	
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Ob	oservations:	
SAMPLE DETAILS	5	
Grab Sample		
Sample Time:	191) Numb	per of Sample bottles
Approx, Sample Dept	th (Moters):	
INSTRUMENT	DATA	
Meter Type	10-10	Serial #:
Calibration Date		Calibration By:

FIELD MEASUREMENTS

		2	931	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	17.3	17.4					:10°C
pH(s.u)	7.7	7.7					± 0.2 standard units
Specific Conductivity (mS cm)	1.09	1.09					= [() o
Turbidity (NTL)	84	88					- 5 ⁰ .0
DO (mg L)	7.06	6.9					± 6 %
DO (mg L) Total Dissolved Solids	80000	0.0008					± 5°°0
Oxidation-reduction potential (mV)	32	29					£ 2()

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8. The flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5

SURFACE WATER SAMPLING - FIELD FORM Staff: Date: Project Name. Sample ID: 3W-02-D-18040 Time FIELD OBSERVATIONS Weather Conditions (lea) Partly Cloudy Overcast. Fog. Smoky Hazy degrees F Air Temp None, Oil, Grease, Scum Colub, Studge Deposits, Trash, Algal Blooms, Foam, Other Water Condition: Clear (see bottom) Cloudy (4" vis) Nurky (4" vis) Water Clarity: Colorless, Green, Yellow, Brown Water Color: None: Sulfides, Sewage: Petroleum, Mixed, Other Water Odor: Other Significant Observations SAMPLE DETAILS Grab Sample Number of Sample bottles Sample Time Approx. Sample Depth (Meters) INSTRUMENT DATA Senal ≠ Meter Type Calibration Date

FIELD MEASUREMENTS

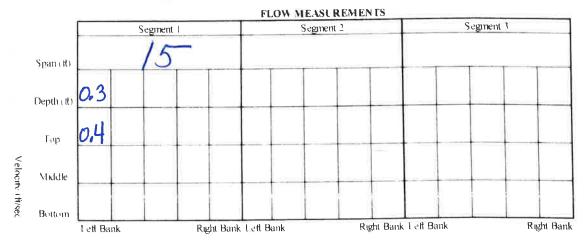
r	L V	,	,41	.11	181	Sample Median	Acceptance
Lempature - C	21.5						- 14 (
pH(x,u)	8,2	8.2					E (1.2) standard units
Specific Conductivity (mS cm)	1.06	1006					± 100%
Turbidity (NTC)	152	145					\$100 pg
DO (ing L)	7.3	7.4					r bota
Total Dissolved Solids	0.0007	0.007					t 50 g
Oxidation-reduction potential (mV)	92	89		ř			(20

| Segment | Segm

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 3. The flow is too high for measurement due to safety concerns.

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table λ -5



Location: BL	LRNHAM	RIVERSIDE	Staff	KL	2	
		OWTS	Date	4151	18	
Sample ID: SW-	-0a-U-	180405	Time	93	3	
FIELD OBSERVATI	ONS					
Weather Conditions:	Clear Purtly Cloudy	Mercast, Fog. Smoky	Hazy	Air Temp:		degrees F
Water Condition:	None, Oil, Grease,	Scum. Wilds. Midge De	eposits, Frash.	, Algal Blooms, F	Foam, Other	
'Water Clarity:	Clear (see bottor)	budy (4 vs) Murky (4" vis)			
Water Color:	Colorless, Green, Ye	llow Brown				
Water Odor:	None, Sulfides, Sev	vage. Petroleum, Mixed.	Other			
Other Significant Obs	en ations:					
			-			
SAMPLE DETAILS						
Grab Sample						
(Sample Time	38		Number of S	Sample bottles		
Approx Sample Depth	(Meters)					
INSTRUMENT	DATA					
Meter Type	/		Ser	al ≠		
Calibration Date			La	libration By		

FIELD MEASUREMENTS

	1		. 3 :	,4	(5)	Sample Median	Acceptance Limits
Lempature A	16.3	16.3					-10 (
pH (v.u.)	8.1	8.1					± 0.2 standard units
Specific Conductivity (mS cm)	0.94	0.94					≤ 100%
Furbidity (NTU)	110	104					\$9 ₀
DO (ing L)	10.7	10.5	ng.				t 6 ° 0
Total Dissolved Solids (92)	0.0007	0.0007					± 50 ₀
Oxidation-reduction potential (mV)	160	160					t 20

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than \$\circ\$ the flow is too high for measurement due to safety concerns.

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

	Qn	Q_1
Location:	South	Staff:
Project Name:	VCEHD OWTS	Date: 5/14/2018
Sample ID: SV	1-05-D-180514	Time: 10-58
FIELD OBSERVATI	ONS	
Weather Conditions:	Clear Partly Cloudy, Overcast, Fog. Smoky, Hazy	Air Temp: degrees H
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits,	Frash, Algal Blooms, Foam, Other
Water Clarity:	Clear (see bottom) (boudy ('4" vis) Murky (4" vis)	
Water Color:	olorless, Geen, Yellow, Brown	*
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other	
Other Significant Obs	ervations:	
SAMPLE DETAILS		
Grab Sample		
Sample Fine	V38	er of Sample bottles
Approx Sample Depth	(Meters):	
INSTRUMENT	DATA	
Meter Type		Senal #
Calibration Date:		Calibration By

FIELD MEASUREMENTS

		×	(A)r	(4)	(5)	Sample Median	Acceptance Lunus
Lempature (*C)	19.9	19.9	19.8				- 1 11 (
pHism	8	8	8				ε 0.2 standard units
Specific Conductivity (mS cm)	1.4	1.4	1.4				= 10 ¹⁰ 0g
Turbidity (NTU)		2	1	4			50 4
DO (mg L)	12.8	12.4	11.7				t fi d o
Total Dissolved Solids (g.L.)	0.8	0.8	008				t 50 n
Oxidation-reduction potential (inV)						-	+ 20

Span (t) Segment | Segment 2 Segment 3 Span (t) Depth (t) Fop Middle Bottom Left Bank Right Bank Left Bank Right Bank Left Bank Right Bank

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8. The flow is too high for measurement due to safety concerns.

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table λ -5

Location:	me Composer	Staff: RL	
Project Name:	VOEHS OWTS	Date: 5/14/18	
Sample ID: SW	-04-U_180514	Time: //58	
FIELD OBSERVAT	IONS		
Weather Conditions:	Clear Parth Cloudy, Overcast, Fog. Smoky, Hazy	Air Temp:	_degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits.	Trash Igal Blooms Foam, Other	
Water Clarity:	Clear (see bottom) Cloudy (-4" vis) Murky (-4" vis)		
Water Color:	okorless. Vireen, Yellow, Brown		
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other		
Other Significant Obs	servations:		
SAMPLE DETAILS			
Grab Sample	12.60		
Sample Time	1202 Numb	er of Sample bottles	
Approx Sample Depth	(Meters):		
			-
INSTRUMENT	DATA		21
Meter Type		Senal ≠	
Calibration Date:		Calibration By:	

FIELD MEASUREMENTS

	1	3	ç bir	(14)	131	Sample Median	Acceptance Lanuts
Lempature (*C)	20.4	20.5	20.5				= 1 o c
pH (> tL)	7.8	7.9	7.9				E 0.2 standard units
Specific Conductivity (mS cm)	1:63	1.63	1.63				= [() ^A a
Turbidity (NTU)	1	1	0				io a
DO (mg L)	11.9	11.3	10.8				E (5 ¹⁾ 0
Total Dissolved Solids 1931	0.91	0.91	0.91				t S ^o n
Oxidation-reduction potential (mV)							± 20

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than \$\frac{3}{2}\$, the flow is too high for measurement due to safety concerns

A.5 SOPs

Geosyntec occupants

Location: CRPER RD	Staff: RL						
Project Name: VCGHD OWTS	Date: 5/14/2018						
Sample ID: SW-04-D-18D5/4	Time: 1245						
FIELD OBSERVATIONS							
Weather Conditions: Partly Cloudy, Overcast, Fog. Smoky, Hazy	Air Temp:degrees F						
Water Condition: None. Oil, Grease, Scum. Solids. Studge Deposits.	Frash. Weal Blooms. Foam, Other						
Water Clarity: (ear see bottom) Cloudy (~4" vis) Murky (~4" vis)							
Water Color: Colorless, Green, Yellow, Brown							
Water Odor: None, Sulfides, Sewage, Petroleum, Mixed, Other							
Other Significant Observations:							
SAMPLE DETAILS							
Grab Sample							
Sample Time: 1250 Number of Sample bottles							
Approx, Sample Depth (Meters):							
INSTRUMENT DATA							
Meter Type:	Serial #:						
Calibration Date:	Calibration By:						

FIELD MEASUREMENTS

	(8)	ž	131	(4)	(5)	Sample Median	Acceptance Limits
Tempature (°C)	20.1	20.1	20.2				= 1 0° (°
pH (s u)	7.8	7.9	7.9				± 0.2 standard units
Specific Conductivity (mS cm)	1.79	1.79	1.80				± 11) ° 0
Turbidity (NTU)		l l					- 5º o
DO (ing L)	21.0	18.0	17.5				۱ 6 °/۰۵
Total Dissolved Solids	1.01	1.01	1.01				± 5%
Oxidation-reduction potential (mV)							1 20

The state of the s			FLOW MEASUREMENTS			Segment 3		
-	Segment I		Se	gment 2				
1	/	7			1			
Span (ft)		4	L					
	m -							
Depth (It)	10 f							
l,	n i		1					
Тор	1.6							
	0(1)		1 1		1 16			
Middle	0.4							
	60							
Bottom	least							
	Lett Bank	Right Bar	k Left Bank	Right B	ank Left Bank	Right I		

Note For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8. If the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5

Geosyntec occupants

Location: POST Project Name: VC	ER PARK EHD OWTS	Staff: RL Date: 5/14/18	
Sample ID: 0W-0	3-D-180514	Time: 1335	
FIELD OBSERVATIONS			
	Partly Cloudy, Overcast, Fog, Smoky, Hazy	Air Temp:	degrees F
Water Condition: None.	Oil, Grease, Scum, Solids, Sludge Deposits.	Trash, Igal Blooms, Joan, Other	
Water Clarity: Gear (see bottom Cloudy (~4" vis) Murky (~4" vis)		
Water Color: Colori	ess. Green, Yellow, Brown		
Water Odor:	Sulfides, Sewage, Petroleum, Mixed, Other		
Other Significant Observation	ins:		
SAMPLE DETAILS			
Grab Sample			
Sample Fime: 134	Numb	per of Sample bottles	
Approx. Sample Depth (Meters	5):		
INSTRUMENT DATA			
Meter Type:		Serial #:	
Calibration Date:		Calibration By	

SURF ACE WATER SAMPLING - FIELD FORM (PG 2)

FIELD MEASUREMENTS

	Ü	1	(1)	747	(5)	Sample Median	Acceptance Limits
Tempature (°C)	19.9	20	20				= 1 0° (°
pH (s u)	7.7	7.8	7.9				± 0.2 standard units
Specific Conductivity (mS cm)	1.07	1007	1.07				± 10 0 ₀
Turbidity (NTL)							5°,0
DO (mg L.)	14. j	12.8	12.6				± 6 % a
Total Dissolved Solids (gr	0.59	0.59	0.59				± 5° o
Oxidation-reduction potential (mV)							£ 20

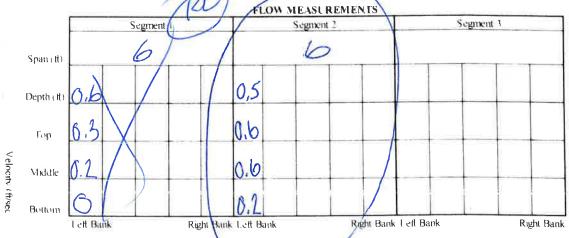
1				FLOW ME	ASUREMEN	TS			
		Segm	ent l	Se	gment 2		Segment 3		
	Span (ft)	30							
1	Depth (tt)	1.3							
	Гор	1.0							
Velocity (ft/sec	Middle	0.8							
(ft/sec	Bottom	Left Bank	Right Bank	Left Bank	Righ	nt Bank Left Bar	ık	Right Bank	

Note For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8. If the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5

SURFACE WATER SAMPLING - FIELD FORM


Location: 1	50/ BURNHAM	Staff: KL	
Project Name:	VC END OWTS	Date: 5/16/20	018
Sample ID: ON	1-01-D_180516	Time: 1003	
FIELD OBSERVATI			
Weather Conditions:	Partly Cloudy: Overcast, Fog. Smoky Hazy	Air Femp:	degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits	s. Frash. Algal Blooms: Foam. Other	
Water Clarity:	(Clear see bottom) Cloudy (-4" vis) Murky (-4" vis		
Water Color:	Colorless Green, Yellow, Brown		
Water Odor:	Sulfides. Sewage. Petroleum, Mixed. Other		
Other Significant Obs	servations:		
SAMPLE DETAILS			
Grab Sample			
:Sample Time	1003	nber of Sample bottles	*
Approx Sample Depth	(Meters)		
INSTRUMENT	DATA		
Meter Type		Serial ≠	
Calibration Date		Calibration By	

SURFACE WATER SAMPLING - FIELD FORM (PG 2)

FIELD MEASUREMENTS

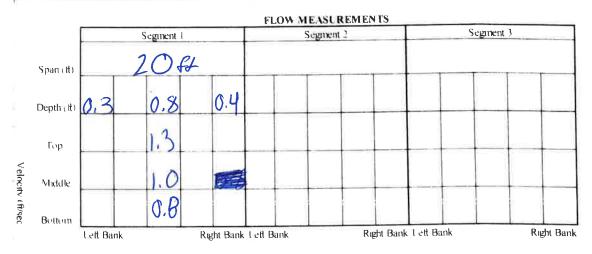
	1	×	gas	VII-	1.82	Sample Median	Acceptance Lunus
Tempature of C1	18.3	18.4					- t-(x - C
pH (s.u.)	8.2	8.2					r 0.2 standard units
Specific Conductivity (inSem)	0.98	0.98					· 10 · 4
Turbidity (NTC)		1					511 9
DX) (mg L)	10.1	10.1					± (1 ¹¹ α
Total Dissolved Solids (g.L)	0.73	0.13					£ 50 a
Oxidation-reduction potential mV)							: 20

For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8, the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

SURFACE WATER SAMPLING - FIELD FORM


Location: 33/ Selphur	Staff: RL
Project Name, VCETHS OWTS	Date: 5/16/18
Sample 1D: 5W-03-U-180516	Time: 1200e
FIELD OBSERVATIONS	
Weather Conditions: Clear Partly Cloudy, Overcast, Fog. Smok	y. Hazy Air Femp:degrees F
Water Condition: None, Oil, Grease, Scum, Solids, Sludge I	Deposits, Trash, Algal Blooms, Foam, Other
Water Clarity: (See bottom) Cloudy (54" vis) Murky (4" vIS}
Water Color: Colorless Lireen, Yellow, Brown	
Water Odor: Vone. Julfides. Sewage. Petroleum, Mixed	, Other
Other Significant Observations:	
SAMPLE DETAILS	
Grab Sample	
Sample Time 1206	Number of Sample bottles
Approx. Sample Depth (Meters):	
INSTRUMENT DATA	
Meter Type	Senal #
alibration Date	Calibration By

SURFACE WATER SAMPLING - FIELD FORM (PG 2)

FIELD MEASUREMENTS

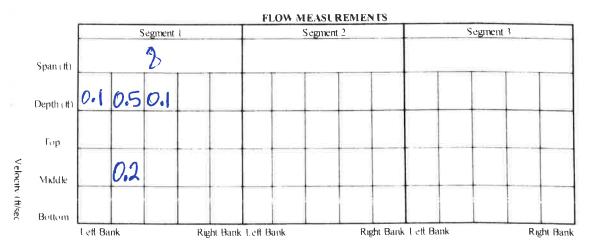
			, 1 ,	(4):	,5x	Sample Median	Acceptance Lumts
Lempature (* C)	18.5	18.5					-101
pH (s.u.)	7.4	7.4		11			F 0.2 standard units
Specific Conductivity (mS cm)	1.12	1.12					= () ° o
Turbidity (NTU)		1					W.o.
DO (mg L)	8.1	8.1					t O o
Total Dissolved Solids (g/L)	0.83	0.83			3 2 3 2 10		t 500
Oxidation-reduction potential (mV)							± 20

Note For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 3 — the flow is too high for measurement due to safety concerns

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table λ -5

SURFACE WATER SAMPLING - FIELD FORM


	BURNHAM RD.	Staff: BL
Location:	DURNATIV) CO.	-11 1000
Project Name:	VCEHD OWTS	Date: 5/16/2018
Sample ID: JV	V-02-4-180516	Time: 1335
FIELD OBSERVA	TIONS	
Weather Condition	s: Clear Parth Cloudy Overcast, Fog. Smoky Hazy	Air Temp: degrees F
Water Condition:	None, Oil, Grease, Scum, Solids, Sludge Deposits,	Frash, Algal Blooms, Foam, Other
Water Clarity:	Cear (so bottom) Cloudy (~4" vis) Murky (~4" vis)	
Water Color:	Colorless, Green, Yellow, Brown	2
Water Odor:	None, Sulfides, Sewage, Petroleum, Mixed, Other	FROGS
Other Significant C	Observations:	
S AMPLE DET AIL	.s	
Grab Sample		
Sample Time	1355 Numb	per of Sample bottles
Approx Sample De	pth (Meters):	
INSTRUMENT	FDATA	
UNSTRUMEN	I DATA	
Meter Type		Serial ≠
:Calibration Date		(alibration By

SURFACE WATER SAMPLING - FIELD FORM (PG 2)

FIFID MEASUREMENTS

r			7/49	14:	₄ (5)	Sample Median	Acceptance Limits
Tempature 3	2506	25.6	25.3			8	-100
рНзецт	8.4	8.5	8.5				• e 0.2 standard units
Specific Conductivity (mS cm)	1.1	1.1	1.				s 10.2a.
Turbiday (NTL)	3	4	3				Stra
D() (ing L)	8.1	7.7	7.8				t h ^ŋ n
Total Dissolved Solids (g.L)	0.73		0.73				t 50 n
Oxidation-reduction potential (mV)							t 20

Note: For surface water sampling locations. Do not wade in water where the estimated depth in feet times the velocity in feet per second is equal to or greater than 8. The flow is too high for measurement due to safety concerns.

A.5 SOPs

Established Standard Operating Procedures (SOPs) should be reviewed by at least one member of the sampling team prior to sampling. The applicable SOPs, for both surface water and groundwater sampling, are referenced below in Table A-5.

3 FIELD PHOTOS

This section includes photos taken during Sampling Event #1. Figures A-1 through A-13 show groundwater sampling wells and Figures A-14 and A-15 show surface water sampling locations.

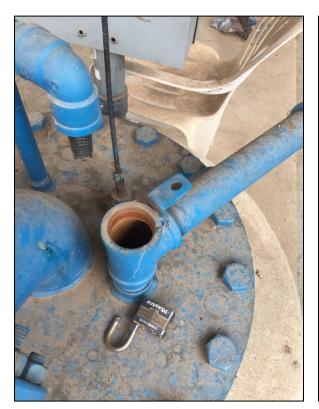


Figure A-1. Groundwater Sampling Well GW-A-01. Photo taken during sampling event #1, September 2017.

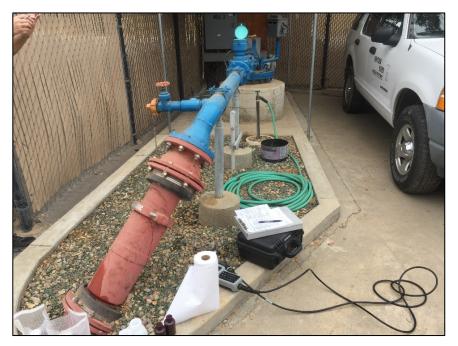
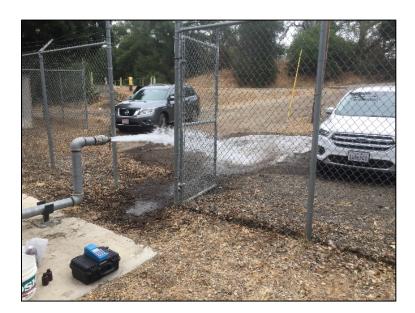


Figure A-2. Groundwater Sampling Well GW-A-02. Photos taken during Sampling Event #1, August 2017.

Figure A-3. Groundwater Sampling Well GW-A-03. Photos taken during Sampling Event #1, August 2017.



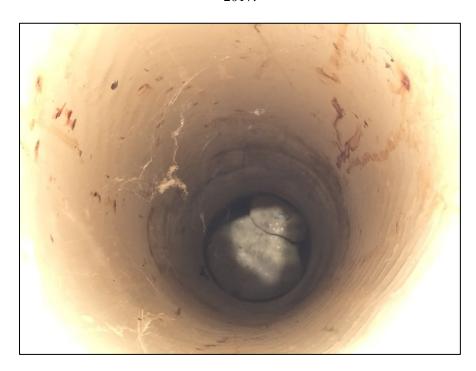


Figure A-4. Groundwater Sampling Well GW-A-05. Photos taken during Sampling Event #1, August 2017.

Figure A-5. Groundwater Sampling Well GW-A-07. Photos taken during Sampling Event #1, August 2017.

Figure A-6. Groundwater Sampling Well GW-B-01. Photo taken during Sampling Event #1, August 2017.

Figure A-7. Groundwater Sampling Well GW-B-03. Photos taken during Sampling Event #1, September 2017.

Figure A-8. Groundwater Sampling Well GW-B-04. Photo taken during Sampling Event #1, August 2017.

Figure A-9. Groundwater Sampling Well GW-D-04. Photos taken during Sampling Event #1, September 2017.

Figure A-10. Groundwater Sampling Well GW-D-05. Photos taken during Sampling Event #1, September 2017.

Figure A-11. Groundwater Sampling Well GW-D-07. Photos taken during Sampling Event #1, September 2017.

Figure A-12. Groundwater Sampling Well GW-F-02. Photos taken during Sampling Event #1, August 2017.

Figure A-13. Groundwater Sampling Well GW-G-02. Photos taken during Sampling Event #1, September 2017.

Figure A-14. Surface Water Sampling Location SW-03-D. Photos taken during Sampling Event #1, August and September 2017.

Figure A-15. Surface Water Sampling Location SW-03-U. Photo taken during Sampling Event #1, September 2017.

Prepared for

County of Ventura – Environmental Health Division

800 S. Victoria Avenue Ventura, California 93009-1730

Technical Report

for the Study of Water Quality Impairments
Attributable to
Onsite Wastewater Treatment Systems (OWTS) in the
Ventura River Watershed

Appendix C – Laboratory Reports and COCs

Prepared by

engineers | scientists | innovators

924 Anacapa Street, Suite 4A

Santa Barbara, CA 93101

Project Number LA0391

September 2018

TABLE OF CONTENTS

1	PHYSIS Laboratories, Inc	
	Institute for Integrated Research in Materials, Environments & Society	
3	Source Molecular	C-199
4	Weck Laboratories, Inc	

Innovative Solutions for Nature

October 26, 2017

Alex Long **IIRMES** 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LA0391)

Physis Project ID: 1708004-001

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 8/25/2017. A total of 7 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals		
Nitrite as N by EPA 300.0		
Nitrate as N by EPA 300.0		
Ammonia as N by SM 4500-NH3 D		
Organics		
Total Nitrogen by Direct Method		

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

IIRMES PHYSIS Project ID: 1708004-001

VCEHD OWTS Study (LAo391)

Total Samples: 7

PHYSIS ID	Sample ID	Description	Date Tim	e Matrix
48114	GW-B-04_170823	Groundwater	8/23/2017 12:4	5 Freshwater
48115	GW-C-01_170823	Groundwater	8/23/2017 14:5	0 Freshwater
48116	GW-F-02_170823	Groundwater	8/23/2017 15:5	0 Freshwater
48117	GW-A-07_170824	Groundwater	8/24/2017 9:20	Freshwater
48118	GW-A-03_170824	Groundwater	8/24/2017 10:2	5 Freshwater
48119	GW-A-02_170824	Groundwater	8/24/2017 11:0	0 Freshwater
48120	GW-A-04_170824	Groundwater	8/24/2017 11:4	0 Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

Innovative Solutions for Nature

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

Innovative Solutions for Nature

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRON RES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

1904 E. Wright Circle, A		1ax. (/14) 002-53	, ******	physisiaus.com imog	wpriysisiaus.co	3.22.1 ,,2,09
Convent	tionals			AN	ALYTIC	CAL REPORT
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
Sample ID: 48114-R1	GW-B-04_170823 Groundwater Method: SM 4500-NH3 D	Matrix: Fro		Sampled: 23-Aug-17 Prepared: 20-Sep-17	12:45	Received: 25-Aug-17 Analyzed: 20-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3	4048	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
Nitrate as N	NA	1.34	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	3	0.14	0.2	mg/L	
Sample ID: 48115-R1	GW-C-01_170823 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30077		Sampled: 23-Aug-17 Prepared: 20-Sep-17	14:50	Received: 25-Aug-17 Analyzed: 20-Sep-17
mmonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3	4048	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
litrate as N	NA	1.62	0.01	0.05	mg/L	
litrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
otal Nitrogen	NA	3.6	0.14	0.2	mg/L	
Sample ID: 48116-R1	GW-F-02_170823 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30077		Sampled: 23-Aug-17 Prepared: 20-Sep-17	15:50	Received: 25-Aug-17 Analyzed: 20-Sep-17
mmonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3	4048	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
litrate as N	NA	9.67	0.01	0.05	mg/L	
litrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
otal Nitrogen	NA	20	0.14	0.2	mg/L	
Sample ID: 48117-R1	GW-A-07_170824 Groundwater Method: SM 4500-NH3 D	Matrix: Fr o Batch ID: C-3		Sampled: 24-Aug-17 Prepared: 20-Sep-17	9:20	Received: 25-Aug-17 Analyzed: 20-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3	4048	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
Nitrate as N	NA	8.87	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	

PHYSIS Project ID: 1708004-001

Client: IIRMES

Project: VCEHD OWTS Study (LA0391)

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA FLAP #2769

1904 E. Wright Circle, A	naheim CA 92806 main: (714) 602-5320	fax: (714) 602-5321	WWW.	.physislabs.com info(@physislabs.com	CA ELAP #2769
Convent	tionals			AN	ALYTIC	AL REPORT
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
	Method: Direct Method	Batch ID: O-1600	7	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	18.1	0.14	0.2	mg/L	
Sample ID: 48118-R1	GW-A-03_170824 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30077		Sampled: 24-Aug-17 Prepared: 20-Sep-17	10:25	Received: 25-Aug-17 Analyzed: 20-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3404	8	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
Nitrate as N	NA	2.86	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1600	7	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	6.36	0.14	0.2	mg/L	
Sample ID: 48119-R1	GW-A-02_170824 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30077		Sampled: 24-Aug-17 Prepared: 20-Sep-17	11:00	Received: 25-Aug-17 Analyzed: 20-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3404	8	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
Nitrate as N	NA	2.45	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1600	7	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	5.33	0.14	0.2	mg/L	
Sample ID: 48120-R1	GW-A-04_170824 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30077		Sampled: 24-Aug-17 Prepared: 20-Sep-17	11:40	Received: 25-Aug-17 Analyzed: 20-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3404	8	Prepared: 25-Aug-17		Analyzed: 25-Aug-17
Nitrate as N	NA	2.51	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1600	7	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	5.42	0.14	0.2	mg/L	

RATORIES, INC.

Innovative Solutions for Nature

1004 F Wright Circle Anaheim CA 02806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

	1904 E. Wright Circle, Anah	ieim CA 92806	main: (714	1) 602-5320	fax	:: (714) 602-532 ⁻	1 W	ww.physislabs	.com	info@physislabs.co	om	CA ELAP #276	9
	Convention	nals						Qι	JALI	TY CONTR	OL R	EPOR	Γ
SAMPLE ID)	BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>¥</i>	ACCURACY LIMITS	F %	RECISION LIMITS	QA CODE
An	nmonia as N		Method: SM	4500-NH3	D	Fraction	: NA	Pre	epared	: 20-Sep-17	Analy	zed: 20-Sep) -17
48113-B1	QAQC Procedural Blank	C-30077	ND	0.007	0.03	mg/L							
48113-BS1	QAQC Procedural Blank	C-30077	0.254	0.007	0.03	mg/L	0.25	0	102	62 - 157% PASS			
48113-BS2	QAQC Procedural Blank	C-30077	0.281	0.007	0.03	mg/L	0.25	0	112	62 - 157% PASS	9	30 PASS	3
48114-MS1	GW-B-04_170823	C-30077	0.3	0.007	0.03	mg/L	0.25	0	120	17 - 186% PASS			
48114-MS2	GW-B-04_170823	C-30077	0.298	0.007	0.03	mg/L	0.25	0	119	17 - 186% PASS	1	30 PASS	;
48114-R2	GW-B-04_170823	C-30077	ND	0.007	0.03	mg/L					0	30 PASS	5
Nitrate as N 48113-R1 OAOC Procedural Blank			Method: EPA	A 300.0		Fraction	: NA	Pre	epared	: 25-Aug-17	Analy	zed: 25-Aug	g-17
48113-B1	QAQC Procedural Blank	C-34048	ND	0.01	0.05	mg/L							
48113-BS1	QAQC Procedural Blank	C-34048	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS			
48113-BS2	QAQC Procedural Blank	C-34048	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS	0	30 PASS	;
48114-MS1	GW-B-04_170823	C-34048	1.81	0.01	0.05	mg/L	0.5	1.34	94	76 - 121% PASS			
48114-MS2	GW-B-04_170823	C-34048	1.82	0.01	0.05	mg/L	0.5	1.34	96	76 - 121% PASS	2	30 PASS	5
48114-R2	GW-B-04_170823	C-34048	1.34	0.01	0.05	mg/L					0	30 PASS	}
Nit	rite as N		Method: EPA	A 300.0		Fraction	: NA	Pre	epared	: 25-Aug-17	Analy	zed: 25-Aug	g-17
48113-B1	QAQC Procedural Blank	C-34048	ND	0.01	0.03	mg/L			•	, j			•
48113-BS1	QAQC Procedural Blank	C-34048	0.46	0.01	0.03	mg/L	0.5	0	92	24 - 155% PASS			
48113-BS2	QAQC Procedural Blank	C-34048	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS	2	30 PASS	3
48114-MS1	GW-B-04_170823	C-34048	0.49	0.01	0.03	mg/L	0.5	0.06	86	63 - 126% PASS			
48114-MS2	GW-B-04_170823	C-34048	0.49	0.01	0.03	mg/L	0.5	0.06	86	63 - 126% PASS	0	30 PASS	;
48114-R2	GW-B-04_170823	C-34048	0.06	0.01	0.03	mg/L					0	30 PASS	,
To	tal Nitrogen		Method: Dir	ect Metho	d	Fraction	: NA	Pre	epared	: 20-Sep-17	Analy	zed: 20-Ser)-17
48113-B1	QAQC Procedural Blank	O-16007	ND	0.14	0.2	mg/L						•	
48113-BS1	QAQC Procedural Blank	O-16007	3.01	0.14	0.2	mg/L	2.5	0	120	70 - 130% PASS			
48113-BS2	QAQC Procedural Blank	O-16007	2.89	0.14	0.2	mg/L	2.5	0	116	70 - 130% PASS	3	30 PASS	}
48114-MS1	GW-B-04_170823	O-16007	5.71	0.14	0.2	mg/L	2.5	3	108	70 - 130% PASS			
48114-MS2	GW-B-04_170823	O-16007	5.68	0.14	0.2	mg/L	2.5	3	107	70 - 130% PASS	1	30 PASS	;
48114-R2	GW-B-04_170823	O-16007	2.99	0.14	0.2	mg/L					0	30 PASS	,

PHYSIS Project ID: 1708004-001 Client: IIRMES Project: VCEHD OWTS Study (LA0391)

CHAIN OF TERRA GUSTEO DA AURA ENVIRON STEOLOGICA INC.

Innovative Solutions for Nature

CHAIN of CUSTODY

	Geosyntec Jervin@Geosyntec.com																	1	COC PAGE 1 of				
Jared Ervin							#			PH	rsis so	OS#	u	T	√ W		Т	YPE OF		ED			
924 Anacapa St., Suite 4A 805-979-9129 office Santa Barbara, CA 93101 805-619-8034 cell						SAM	MPLED BY		eese	Wils	son			1	√ FE	EDEX	([ED VIA	□ U	SPS		
STANDARD (15-20 business	s days)	RUSH		busines	s days				RE	Ql	JE	S	TE	_				-			IICI		
	SWAMP EDD	other	-			-	6	1	Т	T	T				PHYSI		Т		1	_	1		
'sis matrix codes <u>SW</u> = seawater <u>WW</u> = wa	stewater DW = drink	RW = rainw	<i>y</i> ater		1	Nitrate & Nitrite (EPA 300.0)	350.1) & To																
Sample D Sample Sample Sample Sample Description date time							Ammonia (EPA																
GW-B-049170823	Groundwater	100000000000000000000000000000000000000	date time		2	х	X	+	+	\vdash				\vdash	+	\vdash	-	\vdash	+	+	\vdash		
SH-C-01 2170823		8.23.17		FW	2	×	×	+	_						+			\vdash	+	+	\vdash		
GW-F-02_170823		823-17	15:50	FW	2	×	×	1	+										+	+	Н		
								1							\vdash				+	+	Н		
												7							+	+	H		
																			+	_			
								+											-				
										7													
										7													
INQUISHED BY print LEESE WILSON	signature	comp		date &		REC	EIVE	D B'	Y	7													

CHAIN of CUSTODY

Geosyni	Geosyntec Jervin@Geosyntec.com						PROJECT NAME / NUMBER VCEHD OWTS Study (LA0391) COC PAGE of												
OJECT MANAGER	iii@Geos	yntec.c	UIII	PO	#	V	CEHL	PHYSI	1S S1	udy	(LA0	391)	TYPE	DF ICE USED	of		_		
Jared En	vin	Duc											✓ V	VET			Dr	Y	
924 Anacapa St., Suite 4A 805-979-912 Santa Barbara, CA 93101 805-619-803					office	SAN	IPLED BY		eese \	Wilson				EDEX		PPED VIA	US oth		Ī
STANDARD (15-20 busines	s days)	RUSH		busines	s days				RE	QU	ES	TE				SE:		01	
	_SWAMP EDD [other					a		Т	П			SEE PHYS			П	_		
Total Nitroge	n analysis by Catalyti	c Combus	ition			(EPA 300.0)	350.1) & Total Nitrogen												
		ing water er (specify)				Nitrate & Nitrite	Ammonia (EPA 350.												
SAMPLE ID	SAMPLE DESCRIPTION	SAN date	IPLE time	physis matrix code	# of bottles	ž	Ammon												
iw-A-07_170824	Groundwater	8.2417	0920	FW	2	x	х	7											_
NW-A-03-120824			1025	1	2	×	x	1					+	+					_
nW-A-02_170824			1100		2	X	×	+					+				+		_
7W-A-04_170824	1		1140	1	2	×	x	+			+		+	+	-	+	\vdash	-	-
		-		-	_		X	P		\vdash	+		+	+			\vdash		_
						^		4			+		+	+			\vdash	-	_
								+					+	+	+		\vdash	-	_
						Н	-	+		+	+		+	+			\vdash	+	_
							+	+			+	-	+	+	-		\vdash	+	_
								+	+	-		-	+	+	-			-	_
INQUISHED BY						REC	EIVE	D B	Y										_
EESE WILSON	fun 1	GE0541		8.24,H		R.	chie	print	anker		Sil	gnature W	The	FE	compa			e & time	

Sample Receipt Summary

Client: IIRMES	Date Received:	8/25/2017 Received I	By: RGH Inspected By: RGH
Courier:	Cod	oler:	Temperature:
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler ☐ Box	Total #: 2	☐ BLUE 🗹 WET ☐ DRY
Start End Other:	Other:		☐ None 1.4°C
	Sample Integrity Upo	n Receipt:	
1. COC(s) included and completely filled	out		Yes
2. All sample containers arrived intact		•••••	<u>Y</u> es
 All samples listed on COC(s) are prese 	nt		Yes
4. Information on containers consistent	with information on CO	C(s)	Yes
5. Correct containers and volume for all	analyses indicated		Yes
6. All samples received within method h	olding time	•••••	Yes
Correct preservation used for all analy			
8. Name of sampler included on COC(s).			Yes

Notes:

October 27, 2017

Alex Long **IIRMES** 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LA0391)

Physis Project ID: 1708004-002

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 8/26/2017. A total of 3 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals					
Nitrite as N by EPA 300.0					
Nitrate as N by EPA 300.0					
Ammonia as N by SM 4500-NH3 D					
Organics					
Total Nitrogen by Direct Method					

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

IIRMES PHYSIS Project ID: 1708004-002

VCEHD OWTS Study (LAo391)

Total Samples: 3

PHYSIS ID	Sample ID	Description	Date 1	Гime	Matrix
48128	GW-C-BK-05_170825	Ground Water	8/25/2017 1	10:20	Freshwater
48129	GW-C-BK-05_170825-EB	Ground Water	8/25/2017 1	11:00	Freshwater
48130	SW-03-D_170825	SURFACE WATER	8/25/2017 1	15:00	Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRON RES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Convent	ionals			AN	ALYTIC	CAL REPORT
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
Sample ID: 48128-R1	GW-C-BK-05_170825 Ground Water Method: SM 4500-NH3 D	Matrix: F Batch ID: C	reshwater -30078	Sampled: 25-Aug-1; Prepared: 22-Sep-17	7 10:20	Received: 26-Aug-17 Analyzed: 22-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C	-34057	Prepared: 26-Aug-17		Analyzed: 26-Aug-17
Nitrate as N	NA	1.94	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: C	-16007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	4.37	0.14	0.2	mg/L	
Sample ID: 48129-R1	GW-C-BK-05_170825-EB Ground Wat Method: SM 4500-NH3 D	ter Matrix: F	reshwater -30078	Sampled: 25-Aug-1; Prepared: 22-Sep-17	7 11:00	Received: 26-Aug-17 Analyzed: 22-Sep-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C	-34057	Prepared: 26-Aug-17		Analyzed: 26-Aug-17
Nitrate as N	NA	ND	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: C	-16007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	ND	0.14	0.2	mg/L	
Sample ID: 48130-R1	SW-03-D_170825 SURFACE WATER Method: SM 4500-NH3 D	Matrix: F Batch ID: C	reshwater -30078	Sampled: 25-Aug-1; Prepared: 22-Sep-17	7 15:00	Received: 26-Aug-17 Analyzed: 22-Sep-17
Ammonia as N	NA	0.008	0.007	0.03	mg/L	J
	Method: EPA 300.0	Batch ID: C	-34057	Prepared: 26-Aug-17		Analyzed: 26-Aug-17
Nitrate as N	NA	0.91	0.01	0.05	mg/L	
Nitrite as N	NA	0.06	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: C	-16007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	2.31	0.14	0.2	mg/L	

RATORIES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

				., -,		(, ,, ,,		1 /		<u> </u>				
	Convention	nals						QL	JALI	TY CONTR	OL R	EP	ORT	
SAMPLE ID		BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>k</i> %	ACCURACY LIMITS	F %	RECIS L	SION IMITS	QA CODE
Am	nmonia as N		Method: SM	4500-NH3	D	Fractio	n: NA	Pre	epared	: 22-Sep-17	Analy	zed: 2	22-Sep-17	
48127-B1	QAQC Procedural Blank	C-30078	ND	0.007	0.03	mg/L								
48127-BS1	QAQC Procedural Blank	C-30078	0.247	0.007	0.03	mg/L	0.25	0	99	62 - 157% PASS				
48127-BS2	QAQC Procedural Blank	C-30078	0.237	0.007	0.03	mg/L	0.25	0	95	62 - 157% PASS	4	30	PASS	
48129-MS1	GW-C-BK-05_170825-E	C-30078	0.281	0.007	0.03	mg/L	0.25	0	112	17 - 186% PASS				
48129-MS2	GW-C-BK-05_170825-E	C-30078	0.27	0.007	0.03	mg/L	0.25	0	108	17 - 186% PASS	4	30	PASS	
48129-R2	GW-C-BK-05_170825-E	C-30078	ND	0.007	0.03	mg/L					0	30	PASS	
Nit	rate as N		Method: EPA	A 300.0		Fraction	n: NA	Pre	epared	: 26-Aug-17	Analy	zed: 2	26-Aug-17	,
48127-B1	QAQC Procedural Blank	C-34057	ND	0.01	0.05	mg/L			•	J -	-			
48127-BS1	QAQC Procedural Blank	C-34057	0.43	0.01	0.05	mg/L	0.5	0	86	62 - 136% PASS				
48127-BS2	QAQC Procedural Blank	C-34057	0.42	0.01	0.05	mg/L	0.5	0	84	62 - 136% PASS	2	30	PASS	
48130-MS1	SW-03-D_170825	C-34057	1.37	0.01	0.05	mg/L	0.5	0.91	92	76 - 121% PASS				
48130-MS2	SW-03-D_170825	C-34057	1.35	0.01	0.05	mg/L	0.5	0.91	88	76 - 121% PASS	4	30	PASS	
48130-R2	SW-03-D_170825	C-34057	0.91	0.01	0.05	mg/L					0	30	PASS	
Nit	rite as N		Method: EP/	A 300.0		Fraction	n: NA	Pre	epared	: 26-Aug-17	Analy	zed: 2	26-Aug-17	,
48127-B1	QAQC Procedural Blank	C-34057	ND	0.01	0.03	mg/L								
48127-BS1	QAQC Procedural Blank	C-34057	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS				
48127-BS2	QAQC Procedural Blank	C-34057	0.44	0.01	0.03	mg/L	0.5	0	88	24 - 155% PASS	2	30	PASS	
48130-MS1	SW-03-D_170825	C-34057	0.47	0.01	0.03	mg/L	0.5	0.06	82	63 - 126% PASS				
48130-MS2	SW-03-D_170825	C-34057	0.47	0.01	0.03	mg/L	0.5	0.06	82	63 - 126% PASS	0	30	PASS	
48130-R2	SW-03-D_170825	C-34057	0.06	0.01	0.03	mg/L					0	30	PASS	
Tot	tal Nitrogen		Method: Dir	ect Metho	d	Fractio	n: NA	Pre	epared	: 20-Sep-17	Analy	zed: 2	20-Sep-17	
48127-B1	QAQC Procedural Blank	O-16007	ND	0.14	0.2	mg/L			•	, ,				
48127-BS1	QAQC Procedural Blank	O-16007	3.01	0.14	0.2	mg/L	2.5	0	120	70 - 130% PASS				
48127-BS2	QAQC Procedural Blank	O-16007	2.89	0.14	0.2	mg/L	2.5	0	116	70 - 130% PASS	3	30	PASS	

CHAIN of CUSTODY

		EMAIL					PROJECT NAME / NUMBER VCELID OWITS Study (LA 0204)								COC P	COC PAGE					
Geosyntec PROJECT MANAGER			Jervin@Geosyntec.com				VCEHD OWTS Study					dy (L						of			
Jared Ervi	in	FAX						YSIS SOS #						TYPE OF ICE USED BLUE DRY							
DMPANY ADDRESS		PHONE				SAM	PLED B	Y	_				-	<u> </u>	-1		SHIPPE			(Y	_
924 Anacapa St., Suite 4A 805-979-9				office			Re	ese	Wils	son		1	√ FE	DEX		UPS		US	PS		
Santa Barbara, CA 93101 805-619-8034				cell						1	☐ Client ☐ Physis				is						
STANDARD (15-20 business	days)	RUSH		busines	s days				RE	QI	JE	ST	ED	A	NA	AL	YS	SES	S		
	SWAMP EDD	other				-		_	_	_			SE SEE				_	0	-	_	_
ECIAL INSTRUCTIONS	CVVIIII LDD	Journe			_	1_	oge														
Total Nitrogen	analysis by Catalytic	Combus	tion			(EPA 300.0)) & Total Nitrogen														
SIS MATRIX CODES						ie	350.1)			Ш	П									Ш	
	<u>FW</u> = freshwater <u>R</u>		vater			& Nitrite	4 35														
	stewater <u>DW</u> = drinki					∞ Ø	EP,						- 1						4		
\underline{S} = sediment \underline{T} = tissue	$\mathbf{E} = \text{extract} \mathbf{O} = \text{othe}$	r (specify)				ate	·ā				1 1										
																					1
SAMPLE ID	SAMPLE DESCRIPTION	SAN date	/IPLE time	physis matrix code	# of bottles	Nitrate	Ammon		N.												
SAMPLE ID	SAMPLE	date	time	matrix	sof # of pottles	X	× Ammonia (EPA														
SAMPLE ID GW-C-BK-05_170825	SAMPLE DESCRIPTION		time	matrix code	2		x		-												
SAMPLE ID GH-C-BK-05_170825 N-C-BK-05_170825-EB	SAMPLE DESCRIPTION	date	time 10:20	matrix code		х															
SAMPLE ID GH-C-BK-05_170825 GN-C-BK-05_170825-EB	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×		-												
SAMPLE ID GH-C-BK-05_170825 N-C-BK-05_170825-EB	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GH-C-BK-05_170825 N-C-BK-05_170825-EB	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GH-C-BK-05_170825 GN-C-BK-05_170825-88	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GN-C-BK-05_170825 GN-C-BK-05_170825-88	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GN-C-BK-05_170825 GN-C-BK-05_170825-88	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GN-C-BK-05_170825 GN-C-BK-05_170825-88	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2	×	×														
SAMPLE ID GW-C-BK-05_170825 GW-C-BK-05_170825 5W-03-D_170825	SAMPLE DESCRIPTION Groundwater	date \$25.17	time 10:20	matrix code	2 1 2	×	×														
SAMPLE ID GN-C-BK-05_170825 GN-C-BK-05_170825-EB 5N-03-D: (70825)	SAMPLE DESCRIPTION Groundwater	date \$15.17	time 10:20	FW	2 1 2	×	×		Y			Signo	ture								
SAMPLE ID GN-C-BK-05_170825 GN-C-BK-05_170825-88 5N-03-D_170825	SAMPLE DESCRIPTION Groundwater	date \$15.17	time 10:20 11:00 15:00	matrix code	2 1 2	x x x	×	print				signa			PI	com	npany		dat 8/2 3	e & tim	

Sample Receipt Summary

Client: IIRMES	Date Received:	8/26/2017 Received I	By: CN	Inspected By: RGH
Courier:	Cod	oler:		Temperature:
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler ☐ Box	Total #: 1	☐ BLUE	✓ WET □ DRY
Start End Other:	Other:		☐ None	o.8°C
	Sample Integrity Upo	on Receipt:		
1. COC(s) included and completely filled	out		Yes	
2. All sample containers arrived intact				
 All samples listed on COC(s) are prese 	nt		Yes	
4. Information on containers consistent	with information on CO	C(s)	Yes	
5. Correct containers and volume for all	analyses indicated		Yes	
6. All samples received within method h	olding time		Yes	
7. Correct preservation used for all analy	ses indicated		Yes	
8. Name of sampler included on COC(s).			Yes	

Notes:

October 27, 2017

Alex Long IIRMES 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LAo391)

Physis Project ID: 1708004-003

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 9/19/2017. A total of 3 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Nitrite as N by EPA 300.0
Nitrate as N by EPA 300.0
Ammonia as N by SM 4500-NH3 D
Organics
Total Nitrogen by Direct Method

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

IIRMES PHYSIS Project ID: 1708004-003

VCEHD OWTS Study (LAo391)

Total Samples: 3

PHYSIS ID	Sample ID	Description	Date Time	Matrix
48496	GW-D-04-170918	Groundwater	9/18/2017 10:18	Freshwater
48497	GW-D-05-170918	Groundwater	9/18/2017 11:50	Freshwater
48498	GW-D-01-170918	Groundwater	9/18/2017 14:25	Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRON RES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Convent	ionals			ΔΝ	ΔΙ ΥΤΙ	CAL REPORT
Convent	1011413			AN		CALIKEI OKI
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
Sample ID: 48496-R1	GW-D-04-170918 Groundwater Method: SM 4500-NH3 D	Matrix: Fre Batch ID: C-3		Sampled: 18-Sep-17 Prepared: 16-Oct-17	10:18	Received: 19-Sep-17 Analyzed: 16-Oct-17
Ammonia as N	NA	0.009	0.007	0.03	mg/L	J
	Method: EPA 300.0	Batch ID: C-3	4056	Prepared: 19-Sep-17		Analyzed: 19-Sep-17
Nitrate as N	NA	2.35	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	5	0.14	0.2	mg/L	
Sample ID: 48497-R1	GW-D-05-170918 Groundwater Method: SM 4500-NH3 D	Matrix: Fre Batch ID: C-3		Sampled: 18-Sep-17 Prepared: 16-Oct-17	11:50	Received: 19-Sep-17 Analyzed: 16-Oct-17
Ammonia as N	NA	5.4	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-3	4056	Prepared: 19-Sep-17		Analyzed: 19-Sep-17
Nitrate as N	NA	0.16	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	4.18	0.14	0.2	mg/L	
Sample ID: 48498-R1	GW-D-01-170918 Groundwater Method: SM 4500-NH3 D	Matrix: Fre Batch ID: C-3		Sampled: 18-Sep-17 Prepared: 16-Oct-17	14:25	Received: 19-Sep-17 Analyzed: 16-Oct-17
Ammonia as N	NA	0.012	0.007	0.03	mg/L	J
	Method: EPA 300.0	Batch ID: C-3	4056	Prepared: 19-Sep-17		Analyzed: 19-Sep-17
Nitrate as N	NA	5.9	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-1	6007	Prepared: 20-Sep-17		Analyzed: 20-Sep-17
Total Nitrogen	NA	12.9	0.14	0.2	mg/L	

RATORIES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

	, e ,		· · ·	., ,,		(, 1)		1 ,		<u> </u>				
Conventionals QUALITY CONTROL REPORT														
SAMPLE ID		BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>F</i> %	ACCURACY LIMITS	P %		ISION LIMITS	QA CODE
Am	nmonia as N		Method: SM	4500-NH3	D	Fraction	n: NA	Pre	epared	: 16-Oct-17	Analy	zed:	16-Oct-17	
48495-B1	QAQC Procedural Blank	C-30093	ND	0.007	0.03	mg/L								
48495-BS1	QAQC Procedural Blank	C-30093	0.267	0.007	0.03	mg/L	0.25	0	107	62 - 157% PASS				
48495-BS2	QAQC Procedural Blank	C-30093	0.293	0.007	0.03	mg/L	0.25	0	117	62 - 157% PASS	9	30	PASS	
48496-MS1	GW-D-04-170918	C-30093	0.279	0.007	0.03	mg/L	0.25	0.01	108	17 - 186% PASS				
48496-MS2	GW-D-04-170918	C-30093	0.282	0.007	0.03	mg/L	0.25	0.01	109	17 - 186% PASS	1	30	PASS	
48496-R2	GW-D-04-170918	C-30093	0.01	0.007	0.03	mg/L					11	30	PASS	J
Nit	Nitrate as N		Method: EPA	A 300.0		Fraction	n: NA	Pre	epared	: 19-Sep-17	Analy	zed:	19-Sep-17	
48495-B1	QAQC Procedural Blank	C-34056	ND	0.01	0.05	mg/L			•	, ,			, ,	
48495-BS1	QAQC Procedural Blank	C-34056	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS				
48495-BS2	QAQC Procedural Blank	C-34056	0.45	0.01	0.05	mg/L	0.5	0	90	62 - 136% PASS	2	30	PASS	
48496-MS1	GW-D-04-170918	C-34056	2.83	0.01	0.05	mg/L	0.5	2.36	94	76 - 121% PASS				
48496-MS2	GW-D-04-170918	C-34056	2.87	0.01	0.05	mg/L	0.5	2.36	102	76 - 121% PASS	8	30	PASS	
48496-R2	GW-D-04-170918	C-34056	2.38	0.01	0.05	mg/L					1	30	PASS	
Nit	rite as N		Method: EP/	A 300.0		Fraction	n: NA	Pre	epared	: 19-Sep-17	Analy	zed:	19-Sep-17	
48495-B1	QAQC Procedural Blank	C-34056	ND	0.01	0.03	mg/L			•	, i				
48495-BS1	QAQC Procedural Blank	C-34056	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS				
48495-BS2	QAQC Procedural Blank	C-34056	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS	0	30	PASS	
48496-MS1	GW-D-04-170918	C-34056	0.45	0.01	0.03	mg/L	0.5	0	90	63 - 126% PASS				
48496-MS2	GW-D-04-170918	C-34056	0.46	0.01	0.03	mg/L	0.5	0	92	63 - 126% PASS	2	30	PASS	
48496-R2	GW-D-04-170918	C-34056	ND	0.01	0.03	mg/L					0	30	PASS	
Tot	tal Nitrogen		Method: Dir	ect Metho	d	Fraction	n: NA	Pre	epared	: 20-Sep-17	Analy	zed:	20-Sep-17	,
48495-B1	QAQC Procedural Blank	O-16007	ND	0.14	0.2	mg/L			•					
48495-BS1	QAQC Procedural Blank	O-16007	3.01	0.14	0.2	mg/L	2.5	0	120	70 - 130% PASS				
48495-BS2	QAQC Procedural Blank	O-16007	2.89	0.14	0.2	mg/L	2.5	0	116	70 - 130% PASS	3	30	PASS	

PHYSIS Project ID: 1708004-003 Client: IIRMES Project: VCEHD OWTS Study (LA0391) qca - 1 of 1

CHAIN OF TERRA GUSTEO DE AURA ENVIRON ESTADO DE LA COMPANION

Innovative Solutions for Nature

CHAIN of CUSTODY

1708004-003

COMPANY NAME Geosynt ROJECT MANAGER	ec	Jervin@Geosyntec.com			PR	DJECT N	VC		OW	TS S	tudv	(LA	0391)	T	1	of /	
Jared Er	vin	FAX			VCEHD OWTS Study (LA				TYPE OF ICE USED									
924 Anacapa St., Suite 4A Santa Barbara, CA 93101			PHONE 805-979-9129 office 805-619-8034 cell			Reese Wilson				SHIPPED VIA FEDEX UPS USPS					100			
STANDARD (15-20 busines	s days)	RUSH	busines	ss days			F	REC	UC	ES	TE				YSI		Julici	
	SWAMP EDD	other			-		_	_	T		LEASE S							_
SIS MATRIX CODES SW = seawate	astewater DW = drink	RW = rainwater			Nitrate & Nitrite (EPA 300.0)	(EPA 350.1) & Total Nitrogen												
SAMPLE ID	SAMPLE DESCRIPTION	SAMPLE date time	physis matrix code	# of bottles	Nitrat	Ammonia (EPA												
1W-13-04-170918	Groundwater	9/18/17 10:18	FW	2	x	X	+		-	+	\vdash	+	+	\vdash	+	-	+	\vdash
1W-D-05-170918		9/18/17 11:50	FW	2	X	×	\top						+	\vdash	+	+	+	-
W-D-01-170918	1	9/18/17/14:25	FW	2	×	X						+	+	\vdash	+	+	+	\vdash
												+			+	+	+	
															+			
						1	•											
						_	+	+	_									
						+	+	+	_									
INQUISHED BY					REC	FIVE	D BY							1				
BECCA LUSTR	signature	company	date &	time			print			, sig	gnature			comp	oany		date & tin	ne
	Reporta Sustra		9/18/17		-		VIIS	~	R	mil	1		- 6K	usyn			18.17+	
/		GEOSYNTEC	7.18.17	1530	_	ED E			1		,,	- 71						
					Ky	huse	! Har	Kun		The	hul	1/1	+	Phy	sis	9/	19/17	

Sample Receipt Summary

Client: IIRMES	Date Received:	9/19/2017 Receiv	ed By: RGH	Inspected By: RGH
Courier:	Cod	oler:		Temperature:
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler ☐ Box	Total #: 1	☐ BLUE	₩ET □ DRY
Start End Other:	Other:		☐ None	2.7°C
	Sample Integrity Upo	on Receipt:		
1. COC(s) included and completely filled	out		Yes	
2. All sample containers arrived intact	•••••		<u>Y</u> es	
 All samples listed on COC(s) are present 	ent		<u>Y</u> es	
4. Information on containers consistent	with information on CO	C(s)	Yes	
5. Correct containers and volume for all	analyses indicated	•••••	Yes	
6. All samples received within method h	olding time	•••••	Yes	
Correct preservation used for all analy				
8. Name of sampler included on COC(s).			Yes	

Notes:

innovative solutions for Nati

October 26, 2017

Alex Long IIRMES 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LAo391)

Physis Project ID: 1708004-004

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 9/20/2017. A total of 6 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals							
Nitrite as N by EPA 300.0							
Nitrate as N by EPA 300.0							
Ammonia as N by SM 4500-NH3 D							
Organics							
Total Nitrogen by Direct Method							

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

IIRMES PHYSIS Project ID: 1708004-00

VCEHD OWTS Study (LAo391)

Total Samples: 6

PHYSIS ID	Sample ID	Description	Date	Time	Matrix
48516	GW-C-BK-06-170919	Groundwater	9/19/2017	10:00	Freshwater
48517	GW-D-07-170919	Groundwater	9/19/2017	10:49	Freshwater
48518	SW-03-U-170919	Groundwater	9/19/2017	12:30	Freshwater
48519	GW-C-07-170919	Groundwater	9/19/2017	13:20	Freshwater
48520	GW-C-08-170919	Groundwater	9/19/2017	13:45	Freshwater
48521	GW-C-04-170919	Groundwater	9/19/2017	14:10	Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRON RES, INC.

Innovative Solutions for Nature

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Convent	ionals			AN	ANALYTICAL REPORT				
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE			
Sample ID: 48516-R1	GW-C-BK-06-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Fr Batch ID: C-		Sampled: 19-Sep-17 Prepared: 16-Oct-17	10:00	Received: 20-Sep-17 Analyzed: 16-Oct-17			
Ammonia as N	NA	2.86	0.007	0.03	mg/L	Analyzed. 10-Oct-17			
7 illinonia as 14	Method: EPA 300.0	Batch ID: C-		Prepared: 20-Sep-17	mg/L	Analyzed: 20-Sep-17			
Nitrate as N	NA	0.62	0.01	0.05	mg/L	7 mary 2 ca. 20 3 cp 17			
Nitrite as N	NA NA	0.09	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O-		Prepared: 17-Oct-17	9/=	Analyzed: 17-Oct-17			
Total Nitrogen	NA	4.32	0.14	0.2	mg/L	1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Sample ID: 48517-R1	GW-D-07-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Fr Batch ID: C-		Sampled: 19-Sep-17 Prepared: 16-Oct-17	10:49	Received: 20-Sep-17 Analyzed: 16-Oct-17			
Ammonia as N	NA	ND	0.007	0.03	mg/L				
	Method: EPA 300.0	Batch ID: C-	34064	Prepared: 20-Sep-17		Analyzed: 20-Sep-17			
Nitrate as N	NA	0.05	0.01	0.05	mg/L				
Nitrite as N	NA	ND	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O-	16007	Prepared: 17-Oct-17		Analyzed: 17-Oct-17			
Total Nitrogen	NA	0.35	0.14	0.2	mg/L				
Sample ID: 48518-R1	SW-03-U-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Fr Batch ID: C-		Sampled: 19-Sep-17 Prepared: 16-Oct-17	12:30	Received: 20-Sep-17 Analyzed: 16-Oct-17			
Ammonia as N	NA	0.011	0.007	0.03	mg/L	J			
	Method: EPA 300.0	Batch ID: C-		Prepared: 20-Sep-17	9/ —	Analyzed: 20-Sep-17			
Nitrate as N	NA	1.29	0.01	0.05	mg/L	,			
Nitrite as N	NA	ND	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O-	16007	Prepared: 17-Oct-17	•	Analyzed: 17-Oct-17			
Total Nitrogen	NA	2.76	0.14	0.2	mg/L				
Sample ID: 48519-R1	GW-C-07-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Fr Batch ID: C-		Sampled: 19-Sep-17 Prepared: 16-Oct-17	13:20	Received: 20-Sep-17 Analyzed: 16-Oct-17			
Ammonia as N	NA	ND	0.007	0.03	mg/L				
	Method: EPA 300.0	Batch ID: C-	34064	Prepared: 20-Sep-17		Analyzed: 20-Sep-17			
Nitrate as N	NA	1.74	0.01	0.05	mg/L				
Nitrite as N	NA	ND	0.01	0.03	mg/L				

PHYSIS Project ID: 1708004-004 Client: IIRMES

Project: VCEHD OWTS Study (LA0391)

1904 F. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA FLAP #2760

1904 E. Wright Circle, Ar	naneim CA 92806 main: (714) 602-5320	fax: (714) 602-5321	WWW	.physisiabs.com	info@physisiabs.co	m CA ELAP #2769
Convent	ionals			A	NALYTIC	AL REPORT
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
	Method: Direct Method	Batch ID: O-16007	,	Prepared: 17-Oct-	-17	Analyzed: 17-Oct-17
Total Nitrogen	NA	3.66	0.14	0.2	mg/L	
Sample ID: 48520-R1	GW-C-08-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Freshy Batch ID: C-30093		Sampled: 19-Se Prepared: 16-Oct-		Received: 20-Sep-17 Analyzed: 16-Oct-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-34064	ŀ	Prepared: 20-Sep	-17	Analyzed: 20-Sep-17
Nitrate as N	NA	1.92	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O-16007	,	Prepared: 17-Oct-	17	Analyzed: 17-Oct-17
Total Nitrogen	NA	3.87	0.14	0.2	mg/L	
Sample ID: 48521-R1	GW-C-04-170919 Groundwater Method: SM 4500-NH3 D	Matrix: Freshy Batch ID: C-30093		Sampled: 19-Seperage Prepared: 16-Oct-	-	Received: 20-Sep-17 Analyzed: 16-Oct-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-34064	+	Prepared: 20-Sep	-17	Analyzed: 20-Sep-17
Nitrate as N	NA	3.25	0.01	0.05	mg/L	
Nitrite as N	NA	ND	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: 0-16007	,	Prepared: 17-Oct-	17	Analyzed: 17-Oct-17
Total Nitrogen	NA	6.4	0.14	0.2	mg/L	

RATORIES, INC.

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

	Convention	nals						QI	JALI	TY CONTR	OL R	EP	ORT	
SAMPLE ID		BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>4</i> %	ACCURACY LIMITS	F %	PRECI:	SION IMITS	QA CODE
Am	ımonia as N		Method: SM	4500-NH3	D	Fractio	n: NA	Pr	Prepared: 16-Oct-17			Analyzed: 16-Oct-17		
48515-B1	QAQC Procedural Blank	C-30093	ND	0.007	0.03	mg/L			·					
48515-BS1	QAQC Procedural Blank	C-30093	0.267	0.007	0.03	mg/L	0.25	0	107	62 - 157% PASS				
48515-BS2	QAQC Procedural Blank	C-30093	0.293	0.007	0.03	mg/L	0.25	0	117	62 - 157% PASS	9	30	PASS	
Nit	rate as N		Method: EPA	300.0		Fractio	n: NA	Pr	epared	: 20-Sep-17	Analy	zed: :	20-Sep-17	,
48515-B1	QAQC Procedural Blank	C-34064	ND	0.01	0.05	mg/L			_	•			•	
48515-BS1	QAQC Procedural Blank	C-34064	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS				
48515-BS2	QAQC Procedural Blank	C-34064	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS	0	30	PASS	
48518-MS1	SW-03-U-170919	C-34064	1.79	0.01	0.05	mg/L	0.5	1.29	100	76 - 121% PASS				
48518-MS2	SW-03-U-170919	C-34064	1.78	0.01	0.05	mg/L	0.5	1.29	98	76 - 121% PASS	2	30	PASS	
48518-R2	SW-03-U-170919	C-34064	1.29	0.01	0.05	mg/L					0	30	PASS	
Nit	rite as N		Method: EPA	300.0		Fractio	n: NA	Pr	epared	: 20-Sep-17	Analy	zed: :	20-Sep-17	,
48515-B1	QAQC Procedural Blank	C-34064	ND	0.01	0.03	mg/L			•	•				
48515-BS1	QAQC Procedural Blank	C-34064	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS				
48515-BS2	QAQC Procedural Blank	C-34064	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS	0	30	PASS	
48518-MS1	SW-03-U-170919	C-34064	0.47	0.01	0.03	mg/L	0.5	0	94	63 - 126% PASS				
48518-MS2	SW-03-U-170919	C-34064	0.47	0.01	0.03	mg/L	0.5	0	94	63 - 126% PASS	0	30	PASS	
48518-R2	SW-03-U-170919	C-34064	ND	0.01	0.03	mg/L					0	30	PASS	
Tot	tal Nitrogen		Method: Dire	ct Metho	d	Fractio	n: NA	Pr	epared	: 17-Oct-17	Analy	zed: 1	17-Oct-17	
48515-B1	QAQC Procedural Blank	O-16007	ND	0.14	0.2	mg/L								
48515-BS1	QAQC Procedural Blank	O-16007	3.01	0.14	0.2	mg/L	2.5	0	120	70 - 130% PASS				
48515-BS2	QAQC Procedural Blank	O-16007	2.89	0.14	0.2	mg/L	2.5	0	116	70 - 130% PASS	3	30	PASS	

CHAIN OF TERRA GUSTEO DA AURA ENVIRON STEOLOGICA INC.

CHAIN of CUSTODY

COMPANY NAME		EMAIL	7 10 20 10			PROJECT NAME / NUMBER VCEHD OWTS Study (LA0391) COC PAGE of										AGE			
Geosynte PROJECT MANAGER	ec	Jer\ FAX	in@Geos	yntec.c	<u>om</u>			VCE	HD O	WTS	Stud	y (LAC	391)	1 of					
Jared Erv	vin					PO#			PF	YSIS SOS	S#	1	WET		OFICE U	ISED DR	2Y		
COMPANY ADDRESS 924 Anacapa St.	Cuito 11	PHONE	- 070 04	00		SAM	PLED BY	_						SI	HIPPED VI	A			
Santa Barbara, (5-979-91 5-619-80		office			Rees	se Wil	son			EDEX		JPS	US			
TURNAROUND TIME		003	0-019-00	134	cell	+		_					Client		Physis	oth	er		
STANDARD (15-20 business	s days)	☐ RUSH		busines	s days			R	EQ	UE:	STE	ED /	AN	AL'	YSE	ES			
	SWAMP EDD	other					c	_			PLEASI	SEE PHY	SIS SOS						
SPECIAL INSTRUCTIONS					-	1=	oge												
Total Nitro		0 1				300.0)	i i												
Total Nitrogen analysis by Catalytic Combustion							Total Nitrogen												
							∞			11									
SW = seawater FW = freshwater RW = rainwater							0.1												
<u>SW</u> = seawater			vater			Nitrite	4 350.												
	astewater <u>DW</u> = drink					∞ŏ	(EP)												
\underline{S} = sediment \underline{T} = tissue						Nitrate	nia (1 1									
SAMPLE ID	SAMPLE		MPLE	physis matrix	# of bottles	Ž	Ammonia (EPA												
10 1 12 10 10	DESCRIPTION	date	time	code			A												
GW-C-BK-06-170919	Groundwater	9/19/17			2	Х	х												
GW-D-07-170919		9/19/17	10:49	FW	2	K	×												
5W-03-U-170919			13:30			X	X												
GW-C-07_170919			1320			X	X												
C14-C-08_170919			13:45			x	X												
GW-C-041-170919			14:10		1	X	X												
															\top				
																\dashv			
							\neg						+		+	\dashv			
										\vdash					+	+	-		
ELINQUISHED BY						REC	EIVE	D BY							1				
P print	signature		pany	date &	time			print		_	signatu	ire	_	comp	any	dat	e & time		
REESE WILSON	mun-	GEOS	NIEC	9,19.1	7 16:30		ED.		,		,,,	1. /		_					
						R	char	1 Har	tch	×	That I	the		Phy	5.5	9/20	17 1		
				1	1									,					

Sample Receipt Summary

Client: IIRMES	Date Received:	9/20/2017 Received E	By: RGH Inspected By: RGH								
Courier:	Coo	ler:	Temperature:								
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler ☐ Box	Total #: 1	☐ BLUE ✓ WET ☐ DRY								
Start End Other:	Other:		☐ None 3.1°C								
	Sample Integrity Upo	n Receipt:									
1. COC(s) included and completely filled outYes											
2. All sample containers arrived intact											
3. All samples listed on COC(s) are prese	nt		<u>Y</u> es								
4. Information on containers consistent	with information on CO	C(s)	Yes								
5. Correct containers and volume for all analyses indicatedYes											
6. All samples received within method holding timeYes											
Correct preservation used for all analy											
8. Name of sampler included on COC(s).			Yes								

Notes:

October 29, 2017

Alex Long IIRMES 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LAo391)

Physis Project ID: 1708004-005

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 9/21/2017. A total of 4 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals							
Nitrite as N by EPA 300.0							
Nitrate as N by EPA 300.0							
Ammonia as N by SM 4500-NH3 D							
Organics							
Total Nitrogen by Direct Method							

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

IIRMES PHYSIS Project ID: 1708004-005

VCEHD OWTS Study (LAo391)

Total Samples: 4

PHYSIS ID	Sample ID	Description	Date	Time	Matrix
48523	GW-B-03-170920	Groundwater	9/20/2017	9:00	Freshwater
48524	GW-G-02-170920	Groundwater	9/20/2017	10:05	Freshwater
48525	SW-03-D-170920	Groundwater	9/20/2017	11:20	Freshwater
48526	GW-G-02-170920-EB	Groundwater	9/20/2017	14:12	Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R₁/R₂) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
Е	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

TERRA REPORTA AURA ENVIRON RES, INC.

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Convent	ionals			AN	ALYTI	CAL REPORT
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
Sample ID: 48523-R1	GW-B-03-170920 Groundwater Method: SM 4500-NH3 D	Matrix: F I Batch ID: C-	reshwater 30094	Sampled: 20-Sep-17 Prepared: 18-Oct-17	9:00	Received: 21-Sep-17 Analyzed: 18-Oct-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-	34065	Prepared: 21-Sep-17		Analyzed: 21-Sep-17
Nitrate as N	NA	1.64	0.01	0.05	mg/L	
Nitrite as N	NA	0.04	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17
Total Nitrogen	NA	3.56	0.14	0.2	mg/L	
Sample ID: 48524-R1	GW-G-02-170920 Groundwater Method: SM 4500-NH3 D	Matrix: F I Batch ID: C-	reshwater 30094	Sampled: 20-Sep-17 Prepared: 18-Oct-17	10:05	Received: 21-Sep-17 Analyzed: 18-Oct-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-34065		Prepared: 21-Sep-17		Analyzed: 21-Sep-17
Nitrate as N	NA	12.2	0.01	0.05	mg/L	
Nitrite as N	NA	0.04	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17
Total Nitrogen	NA	23.1	0.14	0.2	mg/L	
Sample ID: 48525-R1	SW-03-D-170920 Groundwater Method: SM 4500-NH3 D	Matrix: F I Batch ID: C-	reshwater 30094	Sampled: 20-Sep-17 Prepared: 18-Oct-17	11:20	Received: 21-Sep-17 Analyzed: 18-Oct-17
Ammonia as N	NA	0.016	0.007	0.03	mg/L	J
	Method: EPA 300.0	Batch ID: C-	34065	Prepared: 21-Sep-17		Analyzed: 21-Sep-17
Nitrate as N	NA	0.96	0.01	0.05	mg/L	
Nitrite as N	NA	0.05	0.01	0.03	mg/L	
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17
Total Nitrogen	NA	2.29	0.14	0.2	mg/L	
Sample ID: 48526-R1	GW-G-02-170920-EB Groundwater Method: SM 4500-NH3 D	Matrix: F i Batch ID: C-	reshwater 30094	Sampled: 20-Sep-17 Prepared: 18-Oct-17	14:12	Received: 21-Sep-17 Analyzed: 18-Oct-17
Ammonia as N	NA	ND	0.007	0.03	mg/L	
	Method: EPA 300.0	Batch ID: C-34065		Prepared: 21-Sep-17		Analyzed: 21-Sep-17
		ND 0.01			//	
Nitrate as N	NA	ND	0.01	0.05	mg/L	

PHYSIS Project ID: 1708004-005

Client: IIRMES

Project: VCEHD OWTS Study (LA0391)

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Conventionals

ANAL	YIIC	AL KI	EPOR	

ANIALVEICAL DEDODE

ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
	Method: Direct Method	Batch ID:	O-16008	Prepared: 17-	Oct-17	Analyzed: 17-Oct-17
Total Nitrogen	NA	ND	0.14	0.2	mg/L	

RATORIES, INC.

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

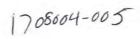
fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

	Convention	nals						Qι	JAL	TY CONTR	OL R	EPORT	
SAMPLE ID)	BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	%	ACCURACY LIMITS	P %	RECISION LIMITS	QA CODE
Am	nmonia as N		Method: SM	4500-NH3	D	Fractio	n: NA	Pr	epared	: 18-Oct-17	Analy	zed: 18-Oct-17	,
48522-B1	QAQC Procedural Blank	C-30094	ND	0.007	0.03	mg/L							
48522-BS1	QAQC Procedural Blank	C-30094	0.259	0.007	0.03	mg/L	0.25	0	104	62 - 157% PASS			
48522-BS2	QAQC Procedural Blank	C-30094	0.273	0.007	0.03	mg/L	0.25	0	109	62 - 157% PASS	5	30 PASS	
48523-MS1	GW-B-03-170920	C-30094	0.298	0.007	0.03	mg/L	0.25	0	119	17 - 186% PASS			
48523-MS2	GW-B-03-170920	C-30094	0.294	0.007	0.03	mg/L	0.25	0	118	17 - 186% PASS	1	30 PASS	
48523-R2	GW-B-03-170920	C-30094	ND	0.007	0.03	mg/L					0	30 PASS	
Nit	trate as N		Method: EPA	300.0		Fractio	n: NA	Pr	epared	: 21-Sep-17	Analy	zed: 21-Sep-17	,
48522-B1	QAQC Procedural Blank	C-34065	ND	0.01	0.05	mg/L			-рш. сс	. 21 бер 17		2. Sep .,	
48522-BS1	QAQC Procedural Blank	C-34065	0.43	0.01	0.05	mg/L	0.5	0	86	62 - 136% PASS			
48522-BS2	QAQC Procedural Blank	C-34065	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS	2	30 PASS	
48523-MS1	GW-B-03-170920	C-34065	2.15	0.01	0.05	mg/L	0.5	1.64	102	76 - 121% PASS			
48523-MS2	GW-B-03-170920	C-34065	2.16	0.01	0.05	mg/L	0.5	1.64	104	76 - 121% PASS	2	30 PASS	
48523-R2	GW-B-03-170920	C-34065	1.63	0.01	0.05	mg/L					1	30 PASS	
NI:4	rite as N		Method: EPA	200.0		Fractio	n. NA	Dr	oparod	: 21-Sep-17	Analy	zed: 21-Sep-17	
48522-B1	QAQC Procedural Blank	C-34065	ND	0.01	0.03	mg/L	III INA	FI	ерагес	· 21-3ep-17	Allaly	zeu. 21-3ep-1/	
48522-BS1	QAQC Procedural Blank	C-34065	0.44	0.01	0.03	mg/L	0.5	0	88	24 - 155% PASS			
48522-BS2	QAQC Procedural Blank	C-34065	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS	2	30 PASS	
48523-MS1	GW-B-03-170920	C-34065	0.47	0.01	0.03	mg/L	0.5	0.04	86	63 - 126% PASS	_	30	
48523-MS2	GW-B-03-170920	C-34065	0.47	0.01	0.03	mg/L	0.5	0.04	86	63 - 126% PASS	0	30 PASS	
48523-R2	GW-B-03-170920	C-34065	0.04	0.01	0.03	mg/L	0.0	0.0 .			0	30 PASS	
_	. 1514												
48522-B1	tal Nitrogen QAQC Procedural Blank	O-16008	Method: Dire	ect Metho 0.14	d 0.2	Fractio mg/L	n: NA	Pr	eparec	: 17-Oct-17	Analy	zed: 17-Oct-17	
48522-BS1	QAQC Procedural Blank	O-16008	2.87	0.14	0.2	mg/L	2.5	0	115	70 - 130% PASS			
48522-BS1	QAQC Procedural Blank	O-16008	2.81	0.14	0.2	mg/L	2.5	0	112	70 - 130% PASS	3	30 PASS	
48523-MS1	GW-B-03-170920	O-16008	5.83	0.14	0.2	mg/L	2.5	3.56	91	70 - 130% PASS	3	30 1 A33	
48523-MS2	GW-B-03-170920	O-16008	5.9	0.14	0.2	mg/L	2.5	3.56	94	70 - 130% PASS	3	30 PASS	
48523-R2	GW-B-03-170920	O-16008	3.56	0.14	0.2	mg/L	2.0	0.00	J-1	10 10070 1 A00	0	30 PASS	
70020-112	OVV D-03-170320	0-10000	3.30	0.14	0.2	IIIg/L					U	30 I A33	


PHYSIS Project ID: 1708004-005

Project: VCEHD OWTS Study (LA0391)

CHAIN OF TERRA GUSTEO DA ENVIRON SES, INC.

CHAIN of CUSTODY

COMPANY NAME		EMAIL				PRO.	JECT NAI	ME / NUM								T	COC	PAGE	. 1
Geosynte	С		n@Geosy	yntec.co	<u>om</u>			VCE	HD C			ıdy (LA03	91)		1	•	of	
PROJECT MANAGER Jared Ervi	n	FAX				PO#			F	HYSIS S	OS#		☑ WI	ΞT	BL			RY	
924 Anacapa St., Santa Barbara, C			-979-91 -619-80		office cell	Reese Wilson						FEDEX UPS USPS Client Physis other							
TURNAROUND TIME		RUSH		husiness	days			R	FO	LIF	SI	F) Δ	NΔ	LY	SF	S		
STANDARD (15-20 business	days)	□ KUSH		business	days	+		1	L	OL			E PHYSIS			OL	-0		
☑ PHYSIS PDF/EDD	SWAMP EDD [other					net		П		1			П					
SPECIAL INSTRUCTIONS Total Nitrogen	analysis by Catalytic	c Combust	tion			(EPA 300.0)	I) & Total Nitrogen												
PHYSIS MATRIX CODES	Aug. To a series					& Nitrite	350.1)												
	FW = freshwater		ater			ž	A 3												
	stewater DW = drink					te &	E E												
\underline{S} = sediment \underline{T} = tissue				T	-	Nitrate	onia												
SAMPLE ID	SAMPLE DESCRIPTION	date	IPLE time	physis matrix code	# of bottles	Z	Ammonia (EPA												
1 GW-B-03-170920	Groundwater	9/20/17	0900	FW	2	х	Х												
2 GW-G-02_170920		1	1005	1	2	X	×												
3 SW-03-D_17-0920		1	1120	1	1	+	×	1									-4		
4 GW-G-02_170920-EB	1	4	1412	4	2	×	×												
5				,															
6																			
7																			
8										18									
9										-									
10																			\neg
RELINQUISHED BY	signature 🖍	com	pany	date 8	k time	REC	CEIVE	D BY			sig	gnature			compa	ny		date & tim	e
REBECCA LUSTIG	Lebera Alt	+ VCET	43	9/20/17	7 15:15	SF	ED	EX											
	1. So hoor							ud H			The	1/1	the	P	Mysi	c	9	1/17	9
																			7
															$\overline{}$				

Sample Receipt Summary

Client: IIRMES	Date Received:	9/21/2017 Received I	By: RGH Inspected By: RGH
Courier:	Coo	oler:	Temperature:
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler 🗌 Box	Total #: 1	☐ BLUE ✓ WET ☐ DRY
Start End Other:	Other:		☐ None 3.3°C
	Sample Integrity Upo	n Receipt:	
1. COC(s) included and completely filled	out		Yes
2. All sample containers arrived intact		•••••	<u>Y</u> es
3. All samples listed on COC(s) are prese	nt		Yes
4. Information on containers consistent	with information on CO	C(s)	Yes
5. Correct containers and volume for all	analyses indicated		Yes
6. All samples received within method h	Yes		
Correct preservation used for all analy			
8. Name of sampler included on COC(s).			Yes

Notes:

October 29, 2017

Alex Long IIRMES 1250 Bellflower Blvd Long Beach, CA 90840-

Project Name: VCEHD OWTS Study (LAo391)

Physis Project ID: 1708004-006

Dear Alex,

Enclosed are the analytical results for samples submitted to PHYSIS Environmental Laboratories, Inc. (PHYSIS) on 9/22/2017. A total of 4 samples were received for analysis in accordance with the attached chain of custody (COC). Per the COC, the samples were analyzed for:

Conventionals
Nitrite as N by EPA 300.0
Nitrate as N by EPA 300.0
Ammonia as N by SM 4500-NH3 D
Organics
Total Nitrogen by Direct Method

Analytical results in this report apply only to samples submitted to PHYSIS in accordance with the COC and are intended to be considered in their entirety.

Please feel free to contact me at any time with any questions. PHYSIS appreciates the opportunity to provide you with our analytical and support services.

Regards,

Misty Mercier Extension 202 714-335-5918 cell mistymercier@physislabs.com

PROJECT SAMPLE LIST

PHYSIS Project ID: 1708004-006 **IIRMES**

VCEHD OWTS Study (LA0391) Total Samples: 4

PHYSIS ID	Sample ID	Description	Date	Time	Matrix
48587	GW-B-05-170921	Groundwater	9/21/2017	8:30	Freshwater
48588	GW-G-01-170921	Groundwater	9/21/2017	10:17	Freshwater
48589	GW-E-03-170921	Groundwater	9/21/2017	13:45	Freshwater
48590	GW-E-03-170921-DUP	Groundwater	9/21/2017	13:45	Freshwater

ABBREVIATIONS and ACRONYMS

QM	Quality Manual
QA	Quality Assurance
QC	Quality Control
MDL	method detection limit
RL	reporting limit
R1	project sample
R2	project sample replicate
MS1	matrix spike
MS2	matrix spike replicate
B1	procedural blank
B2	procedural blank replicate
BS1	blank spike
BS2	blank spike replicate
LCS1	laboratory control spike
LCS2	laboratory control spike replicate
LCM1	laboratory control material
LCM2	laboratory control material replicate
CRM1	certified reference material
CRM2	certified reference material replicate
RPD	relative percent difference
LMW	low molecular weight
HMW	high molecular weight

QUALITY ASSURANCE SUMMARY

LABORATORY BATCH: Physis' QM defines a laboratory batch as a group of 20 or fewer project samples of similar matrix, processed together under the same conditions and with the same reagents. QC samples are associated with each batch and were used to assess the validity of the sample analyses.

PROCEDURAL BLANK: Laboratory contamination introduced during method use is assessed through the preparation and analysis of procedural blanks is provided at a minimum frequency of one per batch.

ACCURACY: Accuracy of analytical measurements is the degree of closeness based on percent recovery calculations between measured values and the actual or true value and includes a combination of reproducibility error and systematic bias due to sampling and analytical operations. Accuracy of the project data was indicated by analysis of MS, BS, LCS, LCM, CRM, and/or surrogate spikes on a minimum frequency of one per batch. Physis' QM requires that 95% of the target compounds greater than 10 times the MDL be within the specified acceptance limits.

PRECISION: Precision is the agreement among a set of replicate measurements without assumption of knowledge of the true value and is based on RPD calculations between repeated values. Precision of the project data was determined by analysis of replicate MS1/MS2, BS1/BS2, LCS1/LCS2, LCM1/LCM2, CRM1/CRM2, surrogate spikes and/or replicate project sample analysis (R1/R2) on a minimum frequency of one per batch. Physis' QM requires that for 95% of the compounds greater than 10 times the MDL, the percent RPD should be within the specified acceptance range.

BLANK SPIKES: BS is the introduction of a known concentration of analyte into the procedural blank. BS demonstrates performance of the preparation and analytical methods on a clean matrix void of potential matrix related interferences. The BS is performed in laboratory deionized water, making these recoveries a better indicator of the efficiency of the laboratory method per se.

MATRIX SPIKES: MS is the introduction of a known concentration of analyte into a sample. MS samples demonstrate the effect a particular project sample matrix has on the accuracy of a measurement. Individually, MS samples also indicate the bias of analytical measurements due to chemical interferences inherent in the in the specific project sample spiked. Intrinsic target analyte concentration in the specific project sample can also significantly impact MS recovery.

CERTIFIED REFERENCE MATERIALS: CRMs are materials of various matrices for which analytical information has been determined and certified by a recognized authority. These are used to provide a quantitative assessment of the accuracy of an analytical method. CRMs provide evidence that the laboratory preparation and analysis produces results that are comparable to those obtained by an independent organization.

LABORATORY CONTROL MATERIAL: LCM is provided because a suitable natural seawater CRM is not available and can be used to indicate accuracy of the method. Physis' internal LCM is seawater collected at ~800 meters in the Southern California San Pedro Basin and can be used as a reference for background concentrations in clean, natural seawater for comparison to project samples.

LABORATORY CONTROL SPIKES: LCS is the introduction of a known concentration of analyte into Physis' LCM. LCS samples were employed to assess the effect the seawater matrix has on the accuracy of a measurement. LCS also indicate the bias of this method due to chemical interferences inherent in the in the seawater matrix. Intrinsic LCM concentration can also significantly impact LCS recovery.

SURROGATES: A surrogate is a pure analyte unlikely to be found in any project sample, behaves similarly to

the target analyte and most often used with organic analytical procedures. Surrogates are added in known concentration to all samples and are measured to indicate overall efficiency of the method including processing and analyses.

HOLDING TIME: Method recommended holding times are the length of time a project sample can be stored under specific conditions after collection and prior to analysis without significantly affecting the analyte's concentration. Holding times can be extended if preservation techniques are employed to reduce biodegradation, volatilization, oxidation, sorption, precipitation, and other physical and chemical processes.

SAMPLE STORAGE/RETENTION: In order to maintain chemical integrity prior to analysis, all samples submitted to Physis are refrigerated (liquids) or frozen (solids) upon receipt unless otherwise recommended by applicable methods. Solid samples are retained for 1 year from collection while liquid samples are retained until method recommended holding times elapse.

TOTAL/DISSOLVED FRACTION: In some instances, the results for the dissolved fraction may be higher than the total fraction for a particular analyte (e.g. trace metals). This is typically caused by the analytical variation for each result and indicates that the target analyte is primarily in the dissolved phase, within the sample.

PHYSIS QUALIFIER CODES

CODE	DEFINITION
#	see Case Narrative
ND	analyte not detected at or above the MDL
В	analyte was detected in the procedural blank greater than 10 times the MDL
E	analyte concentration exceeds the upper limit of the linear calibration range, reported value is estimated
Н	sample received and/or analyzed past the recommended holding time
J	analyte was detected at a concentration below the RL and above the MDL, reported value is estimated
N	insufficient sample, analysis could not be performed
M	analyte was outside the specified accuracy and/or precision acceptance limits due to matrix interference. The associated B/BS were within limits, therefore the sample data was reported without further clarification
SH	analyte concentration in the project sample exceeded the spike concentration, therefore accuracy and/or precision acceptance limits do not apply
SL	analyte results were lower than 10 times the MDL, therefore accuracy and/or precision acceptance limits do not apply
NH	project sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory practices, therefore accuracy and/or precision acceptance limits do not apply
Q	analyte was outside the specified QAPP acceptance limits for precision and/or accuracy but within Physis derived acceptance limits, therefore the sample data was reported without further clarification
R	Physis' QM allows for 5% of the target compounds greater than 10 times the MDL to be outside the specified acceptance limits for precision and/or accuracy. This is often due to random error and does not indicate any significant problems with the analysis of these project samples

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Convent	ionals			AN	ANALYTICAL REPORT				
ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE			
Sample ID: 48587-R1	GW-B-05-170921 Groundwater Method: SM 4500-NH3 D	Matrix: Freshwater Batch ID: C-30094		Sampled: 21-Sep-17 Prepared: 18-Oct-17	8:30	Received: 22-Sep-17 Analyzed: 18-Oct-17			
Ammonia as N	NA NA	0.009	0.007	0.03	mg/L	J			
	Method: EPA 300.0	Batch ID: C-		Prepared: 22-Sep-17	.	Analyzed: 22-Sep-17			
Nitrate as N	NA	3.05	0.01	0.05	mg/L	, , ,			
Nitrite as N	NA	0.04	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17			
Total Nitrogen	NA	6.19	0.14	0.2	mg/L				
Sample ID: 48588-R1	GW-G-01-170921 Groundwater Method: SM 4500-NH3 D	Matrix: F i Batch ID: C-	atrix: Freshwater Sampled		10:17	Received: 22-Sep-17 Analyzed: 18-Oct-17			
Ammonia as N	NA	0.024	0.007	0.03	mg/L	J			
	Method: EPA 300.0	Batch ID: C-	34066	Prepared: 22-Sep-17		Analyzed: 22-Sep-17			
Nitrate as N	NA	4.14	0.01	0.05	mg/L				
Nitrite as N	NA	ND	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17			
Total Nitrogen	NA	8.24	0.14	0.2	mg/L				
Sample ID: 48589-R1	GW-E-03-170921 Groundwater Method: SM 4500-NH3 D	Matrix: F I Batch ID: C-	reshwater 30094	Sampled: 21-Sep-17 Prepared: 18-Oct-17	13:45	Received: 22-Sep-17 Analyzed: 18-Oct-17			
Ammonia as N	NA	ND	0.007	0.03	mg/L				
	Method: EPA 300.0	Batch ID: C-	34066	Prepared: 22-Sep-17		Analyzed: 22-Sep-17			
Nitrate as N	NA	1.88	0.01	0.05	mg/L				
Nitrite as N	NA	0.04	0.01	0.03	mg/L				
	Method: Direct Method	Batch ID: O	-16008	Prepared: 17-Oct-17		Analyzed: 17-Oct-17			
Total Nitrogen	NA	3.43	0.14	0.2	mg/L				
Sample ID: 48590-R1	GW-E-03-170921-DUP Groundwater Method: SM 4500-NH3 D	Matrix: F I Batch ID: C-	reshwater 30094	Sampled: 21-Sep-17 Prepared: 18-Oct-17	13:45	Received: 22-Sep-17 Analyzed: 18-Oct-17			
Ammonia as N	NA	0.008	0.007	0.03	mg/L	J			
	Method: EPA 300.0	Batch ID: C-	34066	Prepared: 22-Sep-17		Analyzed: 22-Sep-17			
Nitrate as N	NA	1.78	0.01	0.05	mg/L				
Nitrite as N	NA	0.04	0.01	0.03	mg/L				

PHYSIS Project ID: 1708004-006

Client: IIRMES

Project: VCEHD OWTS Study (LA0391)

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

Conventionals

ANALYTICAL REPORT

ANALYTE	FRACTION	RESULT	MDL	RL	UNITS	QA CODE
	Method: Direct Method	Batch ID: O-	Batch ID: O-16008		-Oct-17	Analyzed: 17-Oct-17
Total Nitrogen	NA	4.28	0.14	0.2	mg/L	

RATORIES, INC.

1904 E. Wright Circle, Anaheim CA 92806

main: (714) 602-5320

Client: IIRMES

fax: (714) 602-5321

www.physislabs.com

info@physislabs.com

CA ELAP #2769

	Conventionals QUALITY CONTRO								OL R	OL REPORT			
SAMPLE ID		BATCH ID	RESULT	MDL	RL	UNITS	SPIKE LEVEL	SOURCE RESULT	<i>F</i> %	ACCURACY LIMITS	F %	PRECISION LIMITS	QA CODE
Am	nmonia as N		Method: SM	4500-NH3	D	Fractio	n: NA	Pr	repared	: 18-Oct-17	Analy	zed: 18-Oct-17	,
48586-B1	QAQC Procedural Blank	C-30094	ND	0.007	0.03	mg/L					•		
48586-BS1	QAQC Procedural Blank	C-30094	0.259	0.007	0.03	mg/L	0.25	0	104	62 - 157% PASS			
48586-BS2	QAQC Procedural Blank	C-30094	0.273	0.007	0.03	mg/L	0.25	0	109	62 - 157% PASS	5	30 PASS	
Nit	rate as N		Method: EPA	300.0		Fractio	n: NA	Pr	repared	: 22-Sep-17	Analy	zed: 22-Sep-1	7
48586-B1	QAQC Procedural Blank	C-34066	ND	0.01	0.05	mg/L				•		•	
48586-BS1	QAQC Procedural Blank	C-34066	0.45	0.01	0.05	mg/L	0.5	0	90	62 - 136% PASS			
48586-BS2	QAQC Procedural Blank	C-34066	0.44	0.01	0.05	mg/L	0.5	0	88	62 - 136% PASS	2	30 PASS	
48587-MS1	GW-B-05-170921	C-34066	3.52	0.01	0.05	mg/L	0.5	3.05	94	76 - 121% PASS			
48587-MS2	GW-B-05-170921	C-34066	3.5	0.01	0.05	mg/L	0.5	3.05	90	76 - 121% PASS	4	30 PASS	
48587-R2	GW-B-05-170921	C-34066	3.04	0.01	0.05	mg/L					0	30 PASS	
Nit	rite as N		Method: EPA	300.0		Fractio	n: NA	Pr	repared	: 22-Sep-17	Analy	zed: 22-Sep-1	7
48586-B1	QAQC Procedural Blank	C-34066	ND	0.01	0.03	mg/L				•	Í	•	
48586-BS1	QAQC Procedural Blank	C-34066	0.45	0.01	0.03	mg/L	0.5	0	90	24 - 155% PASS			
48586-BS2	QAQC Procedural Blank	C-34066	0.44	0.01	0.03	mg/L	0.5	0	88	24 - 155% PASS	2	30 PASS	
48587-MS1	GW-B-05-170921	C-34066	0.47	0.01	0.03	mg/L	0.5	0.04	86	63 - 126% PASS			
48587-MS2	GW-B-05-170921	C-34066	0.46	0.01	0.03	mg/L	0.5	0.04	84	63 - 126% PASS	2	30 PASS	
48587-R2	GW-B-05-170921	C-34066	0.04	0.01	0.03	mg/L					0	30 PASS	
Total Nitrogen			Method: Dire	ct Metho	d	Fractio	n: NA	Pr	repared	: 17-Oct-17	Analy	zed: 17-Oct-17	
48586-B1	QAQC Procedural Blank	O-16008	ND	0.14	0.2	mg/L			•	•			
48586-BS1	QAQC Procedural Blank	O-16008	2.87	0.14	0.2	mg/L	2.5	0	115	70 - 130% PASS			
48586-BS2	QAQC Procedural Blank	O-16008	2.81	0.14	0.2	mg/L	2.5	0	112	70 - 130% PASS	3	30 PASS	

CHAIN of CUSTODY

1708004-006

COMPANY NAME		EMAIL				PROJE	ECT NAM	ME / NUMB								T	- 1	COC PAG	GE A.
Geosyntec <u>Jervin@Geosyntec.com</u>					VCEHD OWTS Study (LA0391) 1 of					V									
PROJECT MANAGER Jared Ervii	n	FAX				PO#			P	HYSIS SO	OS#		✓W	ET		BLUE		DR	′
OMPANY ADDRESS 924 Anacapa St., Suite 4A Santa Barbara, CA 93101 PHONE 805-979-9129 office 805-619-8034						SAMPI	LED BY	Rees	e Wi	lson			☑ FE			UPS Physi		USF	
TURNAROUND TIME ✓ STANDARD (15-20 business days) RUSH business days							RI	EQ	UE		EASE SE			AL	YS	ES	;		
PHYSIS PDF/EDD	SWAMP EDD	other				П	E E	T		T	T	T T		1			T		
HYSIS MATRIX CODES SW = seawater	analysis by Catalytic FW = freshwater Estewater DW = drinki E = extract O = other	RW = rainwa				Nitrate & Nitrite (EPA 300.0)	Ammonia (EPA 350.1) & Total Nitrogen												
SAMPLE ID	SAMPLE DESCRIPTION	SAM date	PLE time	physis matrix code	# of bottles	Ş	Ammor												
SW-B-05_17 0921	Groundwater	9/21/17	0830	FW	2	х	x												
GW-GD1_170921	6	9/21/17	1017	PW	2	×	×												
GW+03_170921		9/21/17	1345	PW	2	×	7						-10						
GW-6-03_170921-DUP		9/21/17	1345	FW	2	K	2												
		-																\Box	
ELINQUISHED BY	signature A	comp		date 8	& time	REC	EIVE	D BY print			Sit	gnature			cor	mpany		date	e & time
KERFCON LUSING	Holy	VCEN	4	9/21	7 1600		FEI	J Hai		-	1h	1 14	6-		Ph	vsi	ſ	9/2	2/17
	0 9					Ri	chai	I Hav	nken	+	1h	194	h		Ph	ysi.	5	9/2	2/1

Sample Receipt Summary

Client: IIRMES	Date Received:	9/22/2017 Received I	By: RGH Inspected By: RGH					
Courier:	Coo	oler:	Temperature:					
☐ Physis 🗹 FEDEX ☐ UPS ☐ Client	✓ Cooler 🗌 Box	Total #: 1	☐ BLUE ✔ WET ☐ DRY					
Start End Other:	Other:		☐ None 4°C					
	Sample Integrity Upo	on Receipt:						
1. COC(s) included and completely filled	out		Yes					
2. All sample containers arrived intact			<u>Y</u> es					
 All samples listed on COC(s) are prese 	nt	•••••	<u>Y</u> es					
4. Information on containers consistent	with information on CO	C(s)	Yes					
5. Correct containers and volume for all	analyses indicated		Yes					
6. All samples received within method h	All samples received within method holding time							
7. Correct preservation used for all analy	ses indicated		Yes					
8. Name of sampler included on COC(s).			Yes					

Notes:

INSTITUTE FOR INTEGRATED RESEARCH IN MATERIALS, ENVIRONMENTS & SOCIETY June 17, 2018 Los Angeles Regional Water Quality Control Board 320 W. 4th Street Los Angeles, CA 90013 Re: **IIRMES** Project ID: 121-18-03 April 2018 Samples Los Angeles Regional Water Quality C Project ID: VCEHD OWTS Study ATTN: Shana Rapoport IIRMES is pleased to provide you with the enclosed analytical data report for your VCEHD OWTS Study project. According to the chain-of-custody, 26 samples were received intact at IIRMES the week of 4/2/2018. Per your instructions, the samples were analyzed for: Please don't hesitate to contact your project manger if you have any questions and thank you very much for using our laboratory for your analtytical needs. Regards, Alexander Long

Reviewed and Approved

Project Sample List

Los Angeles Regional Water Quality Control Board IIRMES Project ID: 121-18-03 April 2018 Samples

Project Officer: Shana Rapoport
Project Description: VCEHD OWTS Study

Sample ID#	Client Sample ID	Sample Description	Date Sampled	Matrix
16675	SW-04-D_180402		02-Apr-18	Freshwater
16676	GW-E-02_180402		02-Apr-18	Freshwater
16677	GW-E-03_180402		02-Apr-18	Freshwater
16678	SW-05-D_180402		02-Apr-18	Freshwater
16679	SW-04-U_180402		02-Apr-18	Freshwater
16680	SW-03-D_180402		02-Apr-18	Freshwater
16681	GW-A-03_180403		03-Apr-18	Freshwater
16682	GW-A-02_180403		03-Apr-18	Freshwater
16683	GW-A-04_180403		03-Apr-18	Freshwater
16684	GW-A-01_180403		03-Apr-18	Freshwater
16685	GW-F-02_180403		03-Apr-18	Freshwater
16686	SW-01-D_180403		03-Apr-18	Freshwater
16687	GW-C-07_180403		03-Apr-18	Freshwater
16688	GW-C-08_180403		03-Apr-18	Freshwater
16689	GW-B-03_180404		04-Apr-18	Freshwater
16690	GW-C-BK-06_180404		04-Apr-18	Freshwater
16691	GW-D-07_180404		04-Apr-18	Freshwater
16692	SW-03-U_180404		04-Apr-18	Freshwater
16693	GW-A-07_180404		04-Apr-18	Freshwater
16694	SW-02-D_180404		04-Apr-18	Freshwater
16737	SW-02-U_180405		05-Apr-18	Freshwater
16739	GW-D-05-180405		05-Apr-18	Freshwater
16740	GW-D-05_180405_DUP		05-Apr-18	Freshwater
16741	GW-G-02_180405		05-Apr-18	Freshwater

Project Sample List

Los Angeles Regional Water Quality Control Board IIRMES Project ID: 121-18-03 April 2018 Samples

Project Officer: Shana Rapoport
Project Description: VCEHD OWTS Study

16742 GW-B-04-180405 05-Apr-18 Freshwater

16743 GW-B-04-180405_EQ 05-Apr-18 Freshwater

Quality Assurance Summary

Laboratory Batch: The IIRMES Quality Manual (QM) defines a laboratory batch as a group of 20 or fewer samples of similar matrix that are processed together under the same conditions using the same reagents. QC samples are associated with each batch and are used to assess the validity of the sample analyses.

Procedural Blank: Potential laboratory contamination during sample processing and analysis is monitored through the analysis of procedural blanks at a minimum frequency of 1 per batch. The IIRMES QM requires that all measurable procedural blank constituents be less than 10x the MDL and that any detectable constituents be flagged in the project sample results with a *B* qualifier.

Accuracy: Accuracy of the project data is indicated by the analysis of a combination of blank spikes (BS), matrix spikes (MS), laboratory control spikes (LCS), certified reference materials (CRM), and/or surrogate spikes at a minimum frequency of 1 per batch. The IIRMES QM requires that 95% of the compounds greater than 10x the MDL be within the specified acceptance limits.

Precision: Precision of the project data is determined by the analysis of duplicate matrix spikes, blank spikes, and/or duplicate test sample analysis on a minimum frequency of 1 per batch. The IIRMES QM requires that for 95% of the compounds greater than 10x the MDL, the relative percent difference (RPD) be within the specified acceptance range.

Holding Time: The IIRMES QM requires that all samples be processed and analyzed within the method specific recommended holding times. Those sample analyses falling outside that specified holding time will be flagged in the sample results with a *H*.

Total/Dissolved Fraction: In some instances the results for the dissolved fraction may be higher than the total fraction for a particular analyte. This is typically caused by the corresponding analytical variation for each result and indicates the target analyte is primarily in the dissolved phase of the sample.

IIRMES Qualifier Codes

<u>Code</u>	<u>Definition</u>
ND	Analyte not detected at or above the listed MDL
В	Analyte was detected in the associated procedural blank
Н	Sample was received and/or analyzed past the recommended holding time
J	Analyte was detected at a concentration above the MDL but below the RL, therefore the reported value is estimated
N	Insufficient sample, analysis could not be performed
M	Analyte was outside the specified recovery and/or RPD acceptance limits due to matrix interference. The associated blank spikes were within limits, therefore the sample data was reported without further clarification
Q1	Analyte concentration in the sample exceeded the spike concentration, therefore the MS recovery and/or RPD limits do not apply
Q2	Analyte results for R1 and/or R2 were lower than 10x the MDL, therefore the RPD limits do not apply
NH	Sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory procedures, therefore the corresponding RPD was outside the specified acceptance limits.

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03

P.O. #: C1023-180403-01

Lab Request: 401307
Report Date: 04/10/2018
Date Received: 04/03/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
401307-001	SW-04-D_180402
401307-002	GW-E-02_180402
401307-003	GW-E-03_180402
401307-004	SW-05-D_180402
401307-005	SW-04-U_180402
401307-006	SW-03-D 180402

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Client: IIRM	IES		C	ollector: Client			
Sampled: 04/02/2018 09:18	Site:	04 D 400400		C	la Tima.			
Sample #: 401307-001	Client Sample #: SW-				le Type:			
Analyte	Resu	ult DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None	4	0.5	//		QCBatchID		
Total Nitrogen	1.48	1	0.5	mg/L		04/10/18	SLL	
Method: EPA 300.0	Prep Method: Method				0.1/0.0/1.0	QCBatchID		C1189655
Nitrate, as Nitrogen	1.48		0.1	mg/L	04/02/18	04/03/18 18:00	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/02/18	04/03/18 18:00	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID		C1189950
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1189743
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	21189889
Coliform, E. Coli	50	1	N	IPN/100ml	04/03/18 15:13	04/06/18 17:35	SK	T3
Madaire NA/-1	011. (1151.)	IFC			allanton Oll I			
Matrix: Water	Client: IIRM	IES		C	ollector: Client			
Sampled: 04/02/2018 10:35	Site:	F 02 480402		Comm	la Tyma.			
Sample #: 401307-002	Client Sample #: GW-	-E-02_160402		Samp	le Type:			
Analyte	Resu	ılt DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID	:	
Total Nitrogen	4.37	1	0.5	mg/L		04/10/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID	: Q(C1189655
Nitrate, as Nitrogen	4.37	1	0.1	mg/L	04/02/18	04/03/18 18:16	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/02/18	04/03/18 18:16	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID	: Q0	C1189950
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1189743
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	C1189889
Coliform, E. Coli	<2	1	N	IPN/100ml	04/03/18 15:13	04/05/18 18:10	SK	T3
Matrix: Water	Client: IIRM	IES		C	ollector: Client			
Sampled: 04/02/2018 11:00	Site:							
Sample #: 401307-003	Client Sample #: GW-	-E-03_180402		Samp	le Type:			
Analyte	Resu	ult DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID	:	
Total Nitrogen	2.40	1	0.5	mg/L		04/10/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID	: Q0	C1189655
Nitrate, as Nitrogen	2.40	1	0.1	mg/L	04/02/18	04/03/18 18:33	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/02/18	04/03/18 18:33	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID	: Q0	21189950
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	21189743
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Method			-		QCBatchID		21189889
Coliform, E. Coli	<2 ×2	1	N/	1PN/100ml	04/03/18 15:13	04/06/18 17:35		T3
55m5m, E. 50m	₹Z	· ·	IV	14/ 1001111	5 #100/10 10.10	5 11 00 10 11.00	٠.٠	10

Matrix: Water	Client: I	IRMES			C	ollector: Client			
Sampled: 04/02/2018 11:55 Sample #: 401307-004	Site:	SW OF D	190402		Samn	lo Tymor			
Sample #: 401307-004	Client Sample #: S	5W-05-D_	_100402		Samp	le Type:			
Analyte		esult	DF	RD	L Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None			0.5	"		QCBatchID	•	
Total Nitrogen		1.53	1	0.5	mg/L		04/10/18	SLL	
Method: EPA 300.0	Prep Method: Meth						QCBatchID		1189655
Nitrate, as Nitrogen		1.37	1	0.1	mg/L	04/02/18	04/03/18 18:49	JP	
Nitrite, as Nitrogen		ND	1	0.1	mg/L	04/02/18	04/03/18 18:49	JP	
Method: EPA 350.1	Prep Method: Meth						QCBatchID		1189950
Ammonia, as Nitrogen		ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Meth	od					QCBatchID		1189743
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Meth	od					QCBatchID	: Q0	1189889
Coliform, E. Coli	:	300	1		MPN/100ml	04/03/18 15:13	04/06/18 17:35	SK	T3
Matrix: Water	Client: I	IRMES			C	ollector: Client			
Sampled: 04/02/2018 13:30	Site:	IIVILO				onector. Onem			
Sample #: 401307-005	Client Sample #: S	SW-04-U_	_180402		Samp	le Type:			
Analysis	-			DD			A so a la seria al	Dec	Mataa
Analyte Method: ALCH 4025	Prep Method: None	esult	DF	RD	L Units	Prepared	Analyzed QCBatchID		Notes
Total Nitrogen	<u> </u>	.35	1	0.5	mg/L		04/10/18	SLL	
Method: EPA 300.0			•	0.0			QCBatchID		21189655
Nitrate, as Nitrogen	Prep Method: Meth	1.35	1	0.1	mg/L	04/02/18	04/03/18 19:06	JP	71109000
Nitrate, as Nitrogen		ND	1	0.1	mg/L	04/02/18	04/03/18 19:06	JР	
Method: EPA 350.1			•	0.1		04/02/10	QCBatchID		C1189950
Ammonia, as Nitrogen	Prep Method: Meth	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	71109950
			ı.	0.1	IIIg/L	04/09/16			
Method: EPA 351.2	Prep Method: Meth		4	0.4	/1	0.4/0.4/4.0	QCBatchID		1189743
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Meth				14D1///00 1		QCBatchID		1189889
Coliform, E. Coli		50	1		MPN/100ml	04/03/18 15:13	04/06/18 17:35	SK	T3
Matrix: Water	Client: I	IRMES			С	ollector: Client			
Sampled: 04/02/2018 14:25	Site:								
Sample #: 401307-006	Client Sample #: S	SW-03-D_	_180402		Samp	le Type:			
Analyte	R	esult	DF	RD	L Units	Prepared	Analyzed	By	Notes
Method: ALCH 4025	Prep Method: None			IND		Trepared	QCBatchID		110103
Total Nitrogen	<u> </u>	1.12	1	0.5	mg/L			SLL	
Method: EPA 300.0	Prep Method: Meth	od					QCBatchID	: Q0	21189655
Nitrate, as Nitrogen	<u>'</u>	1.12	1	0.1	mg/L	04/02/18	04/03/18 19:22	JP	
Nitrite, as Nitrogen		ND	1	0.1	mg/L	04/02/18	04/03/18 19:22	JP	
Method: EPA 350.1	Prep Method: Meth	od					QCBatchID	: Q0	21189950
Ammonia, as Nitrogen	<u> </u>	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Meth	od					QCBatchID		21189743
Total Kjeldahl Nitrogen	<u> </u>	ND	1	0.4	mg/L	04/04/18	04/04/18	TP	
Method: SM 9221-F	Prep Method: Method				<i>y</i> –		QCBatchID		1189889
Coliform, E. Coli	r rep ivietriou. ivietri	80	1		MPN/100ml	04/03/18 15:13	04/06/18 17:35		T3
Comorni, E. Con			<u>'</u>		IVII IN/ IOUIIII		U-7/UU/10 17.33	JIV.	13

QCBatchID:QC1189655Analyst:JParedesMethod:EPA 300.0Matrix:WaterAnalyzed:04/02/2018Instrument:AAICP (group)

Blank Summary									
	Blank								
Analyte	Result	Units	RDL	Notes					
QC1189655MB1									
Chloride	ND	mg/L	1						
Nitrate + Nitrite, as Nitrogen	ND	mg/L	0.44						
Nitrate, as Nitrogen	ND	mg/L	0.1						
Nitrite, as Nitrogen	ND	mg/L	0.1						
Sulfate	ND	mg/L	0.5						

Lab Control Spike/ Lab Control Spike Duplicate Summary											
	Spike	Amount	Spike Result			Recoveries			Limi	ts	
Analyte	LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1189655LCS1	•			•							
Chloride	100		102		mg/L	102			90-110		
Nitrate, as Nitrogen	9.03		9.20		mg/L	102			90-110		
Nitrite, as Nitrogen	9.15		9.05		mg/L	99			90-110		
Sulfate	50		49.4		mg/L	99			90-110		

	Matrix Spike/Matrix Spike Duplicate Summary											
	Sample	Spike /	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189655MS1, QC1189655MSD1							•			Sc	urce:	401248-001
Chloride	78.6	100	100	174	175	mg/L	95	96	0.6	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	9.20	9.18	mg/L	102	102	0.2	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.97	8.94	mg/L	98	98	0.3	80-120	20	
Sulfate	12.8	50	50	62.6	62.8	mg/L	100	100	0.3	80-120	20	
QC1189655MS2										Sc	urce:	401252-001
Chloride	86.2	100		182		mg/L	96			80-120		
Nitrate, as Nitrogen	ND	9.03		9.23		mg/L	102			80-120		
Nitrite, as Nitrogen	ND	9.15		9.02		mg/L	99			80-120		
Sulfate	12.7	50		63.0		mg/L	101			80-120		

QCBatchID: QC1189743	Analyst:	trinh		Met	hod:	EPA 351.2						
	•	04/04/2	018	Instrum	nent:	CHEM (group))					
			BI	ank Sum	ımar	<i>y</i>						
			Blank			, 						
Analyte			Result	Uni	ts		RE	DL	No	tes		
QC1189743MB1	I_					1				1		
Total Kjeldahl Nitrogen			ND	mg/	/L		0.	4				
Lab	Conti	rol Spil	ke/ Lab	Control	Spik	re Duplicate	e Sun	nmary				
		Spike A	Amount	Spike R	esult		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1189743LCS1						-						
Total Kjeldahl Nitrogen		2.5		2.3		mg/L	92			80-120		
Matrix Spike/Matrix Spike Duplicate Summary												
S	Sample	Spike A	Amount	Spike R	esult		Reco	veries		Limi	ts	
Analyte A	mount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189743MS1, QC1189743MSD1										Sc	ource:	401307-00

Total Kjeldahl Nitrogen

ND

12.5

12.5

9.6

10

mg/L

77

80

4.1

80-120 20

М

\ malvat.	trinh		Masi	h a al .	EDA 250.1						
anaiyst:	trinn		Meti	noa:	EPA 350.1						
alyzed:	04/10/2	2018	Instrum	ent:	CHEM (group)						
		Bla	ank Sum	mar	У						
		Blank									
		Result	Unit	ts		RE	DL	No	tes		
					-						
		ND	mg/	′L		0.	1				
Lab Control Spike/ Lab Control Spike Duplicate Summary											
	Spike /	Amount	Spike R	esult		Reco	veries		Lim	its	
	LCS	LCSD	LCS	LCSE	O Units	LCS	LCSD	RPD	%Rec	RPD	Notes
	5		4.68		mg/L	94			80-120		
Matrix Spike/Matrix Spike Duplicate Summary											
Sample	Spike	Amount	Spike R	esult		Reco	veries		Limit	S	
mount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
									So	urce:	401307-003
	Control Mata	Control Spike LCS 5 Matrix Sp ample Spike	Blank Result ND Control Spike/ Lab Spike Amount LCS LCSD Matrix Spike/Matriample Spike Amount	Blank Sum Blank Result Unit	Blank Summar Blank Result Units	Blank Summary Blank Result Units	Blank Summary Blank Result Units RE ND mg/L 0. Control Spike/ Lab Control Spike Duplicate Sum Record LCS LCSD LCS LCSD Units LCS 5 4.68 mg/L 94 Matrix Spike Amount Spike Result Record Spike Duplicate Summary Spike Amount Spike Result Record Spike Duplicate Summary Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spike Amount Spike Result Record Spike Spi	Blank Summary Blank Result Units RDL	Blank Summary Blank Result Units RDL No	Blank Summary Blank Result Units RDL Notes	Blank Summary Blank Result Units RDL Notes ND mg/L 0.1 Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result LCS LCSD LCS LCSD Units LCS LCSD RPD %Rec RPD 5 4.68 mg/L 94 80-120 Matrix Spike/Matrix Spike Duplicate Summary ample Spike Amount Spike Result Recoveries Limits LCS LCSD RPD %Rec RPD Matrix Spike/Matrix Spike Duplicate Summary AMOUNT RECOVERIES LCSD RPD %Rec RPD

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.

Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.
 Q2 Analyte calibration was not verified and the result was estimated.

Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit

TIC Tentatively Identified Compounds

1250 Bellflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

	· «WV/RONMEN"	(CHAIN	N-OF-C	CUST	ODY								pa	age		1	1 of 1	
-	Client Name	IIRMES									RE	QUE	STE	DAN	NALY	SES			
	1,100	1250 Belific							15 5							-			
		Long Beach	n, CA 9084	0				١											
	Project Contact Name		- 4									1							
_	Email Address						1												
-	Project Name/Number	(310) 408-2 121-18-03					1	1				_				1) 11			
	P.O. Number		403-01				1 1					ger							
	Sampled By			18016				ä				i i							
	Client Sample ID / Description	Sample Date	Sample Time	Sample Co Matrix Quantity		ontainer Type	E. Coli	Ammonia	TKN	Nitrate	Nitrite	Total Nitrogen							
1	SW-04-D_180402	4/2/2018	09:18	Freshwater	3	Various	x	x	x	x	x	х							
2	GW-E-02_180402	4/2/2018	10:35	Freshwater	3	Various	x	×	x	x	х	х				- / -			
3	GW-E-03_180402	4/2/2018	11:00	Freshwater	3	Various	х	x	х	x	х	х				112			
4	SW-05-D_180402	4/2/2018	11:55	Freshwater	3	Various	х	х	×	х	x	×							
5	SW-04-U_180402	4/2/2018	13:30	Freshwater	3	Various	X	×	×	x	×	×							
6	SW-03-D_180402	4/2/2018	14:25	Freshwater	3	Various	x	х	x	х	×	x							
7									(= 1										
8																			
9							i i	II		-3									
10					1			11	(1										
	Type of Ice used:	Wet	Blue	None		Signature:					RE	LINQU	ISHED	BY	-1	DAT	F:		-
	Sample Preservative:	Yes	No			orginature:				0						541	-		
	TURNAROUND TIME NEEDED:	Standard				pr	20		Th							1	4/2	3/18	5.T
(COMMENTS:					Print:	1001	16	/	NE	200	(TIMI		10	-
1	KN Preserved with Sulfurion	: Acid				Company: IIR		9	~	146	5 65						2:5	-3	
	Please analyze E. coli even t		is past h	oldina tim	ne							RECEI	/ED D	,					
			- Luce	3		Signature:		_		-	-	KEUEI	AED B	-	-	DAT	E:		73
						Con	1										4/3	3/12	?
						Print:	1	1	(in	1	-					TIM	E:		
	Project ID#	401	1307			Company:		e v Ev	6	N. A. I.						7		153	
	Project ID#						- 1	N	2									/	

SAMPLE ACCEPTANCE CHECKLIST

Section 1										
Client: IIRMES	Project: 121-18-03									
Date Received: 4/3/18	Sampler's Name Present:	Sampler's Name Present: ✓ Yes No								
Section 2			Same Sa							
Sample(s) received in a cooler? \checkmark Yes, How many? $\frac{1}{}$	No (skip section 2)		e Temp (°C) (No Cooler)							
Sample Temp (°C), One from each cooler: #1: 0.8 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance the same day as sample receipt to have a higher temperation:	ptance range is $< 10^{\circ}$ C but not frozen). It	_#4: is acceptable	for sample							
Section 3										
Was the cooler packed with:	Bubble Wrap Styrof Other#3:	foam 								
Section 4		YES	NO	N/A						
Was a COC received?		1		,/						
Are sample IDs present?		1								
Are sampling dates & times present?		1	-							
Is a relinquished signature present?		1								
Are the tests required clearly indicated on the COC?		1								
Are custody seals present?										
If custody seals are present, were they intact?				1						
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	1								
Did all samples arrive intact? If no, indicate in Section 4		1								
Did all bottle labels agree with COC? (ID, dates and tim		1								
Were the samples collected in the correct containers for		1								
Are the containers labeled with the correct prese		1								
Is there headspace in the VOA vials greater than 5-6 m				1						
Was a sufficient amount of sample submitted for the re		1								
Section 5 Explanations/Comments Okay to run past holding time										
Section 6 For discrepancies, how was the Project Manager notifi	ed? Verbal PM Initials: Email (email sent to/o									
Project Manager's response:										
Completed By:	Date: 43/18									

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03b

P.O. #: C1023-180404-02

Lab Request: 401365
Report Date: 04/12/2018
Date Received: 04/04/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
401365-001	GW-A-03_180403
401365-002	GW-A-02_180403
401365-003	GW-A-04_180403
401365-004	GW-A-01_180403
401365-005	GW-F-02_180403
401365-006	SW-01-D_180403
401365-007	GW-C-07_180403
401365-008	GW-C-08_180403

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Client: IIRMES Matrix: Water Collector: Client Sampled: 04/03/2018 09:03 Site: Sample #: 401365-001 Client Sample #: GW-A-03_180403 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 5.68 0.5 04/12/18 SLL 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1189764 Nitrate, as Nitrogen 5.68 04/04/18 04/04/18 18:27 1 0.1 mg/L Nitrite, as Nitrogen ND 1 0.1 04/04/18 04/04/18 18:27 JP mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1189950 Ammonia, as Nitrogen 1 0.1 04/09/18 04/10/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1190021 Total Kjeldahl Nitrogen 1 0.4 04/11/18 04/12/18 ΤP mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1189891 Coliform, E. Coli <2 1 MPN/100ml 04/04/18 18:50 04/06/18 17:45 SK Matrix: Water Client: IIRMES Collector: Client Sampled: 04/03/2018 09:31 Site: Sample #: 401365-002 Client Sample #: GW-A-02_180403 Sample Type: Analyzed By **Analyte** Result **DF** RDL **Units Prepared Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 04/12/18 4.93 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1189764 Nitrate, as Nitrogen 4.93 0.1 mg/L 04/04/18 04/04/18 18:44 1 Nitrite, as Nitrogen ND 0.1 04/04/18 04/04/18 18:44 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1189950 Ammonia, as Nitrogen 04/09/18 04/10/18 ΤP 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1190021 Total Kjeldahl Nitrogen 1 0.4 mg/L 04/11/18 04/12/18 ΤP Prep Method: Method Method: SM 9221-F QCBatchID: QC1189891 Coliform, E. Coli 1 MPN/100ml 04/04/18 18:50 04/06/18 17:45 Matrix: Water Client: IIRMES Collector: Client Sampled: 04/03/2018 09:59 Site: Sample #: 401365-003 Client Sample #: GW-A-04_180403 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 04/12/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1189764 Prep Method: Method Nitrate, as Nitrogen 1.88 0.1 04/04/18 04/04/18 19:00 1 mg/L Nitrite, as Nitrogen 1 0.1 mg/L 04/04/18 04/04/18 19:00 Method: EPA 350.1 Prep Method: Method QCBatchID: QC1189950 Ammonia, as Nitrogen 1 0.1 ma/L 04/09/18 04/10/18 QCBatchID: Method: EPA 351.2 Prep Method: Method QC1190021 Total Kjeldahl Nitrogen ND 0.4 04/11/18 04/12/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1189891 Coliform, E. Coli MPN/100ml 04/04/18 18:50 04/06/18 17:45 SK T3

1

Client: IIRMES Matrix: Water Collector: Client Sampled: 04/03/2018 10:30 Site: Sample #: 401365-004 Client Sample #: GW-A-01_180403 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 0.5 04/12/18 SLL 3.07 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1189764 Nitrate, as Nitrogen 3.07 04/04/18 04/04/18 19:16 JP 1 0.1 mg/L Nitrite, as Nitrogen ND 1 0.1 04/04/18 04/04/18 19:16 JP mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1189950 Ammonia, as Nitrogen 1 0.1 04/09/18 04/10/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1190021 Total Kjeldahl Nitrogen 1 0.4 04/11/18 04/12/18 ΤP mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1189891 Coliform, E. Coli <2 1 MPN/100ml 04/04/18 18:50 04/06/18 17:45 SK Matrix: Water Client: IIRMES Collector: Client Sampled: 04/03/2018 11:17 Site: Sample #: 401365-005 Client Sample #: GW-F-02_180403 Sample Type: Analyzed By **Analyte** Result **DF** RDL **Units Prepared Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 04/12/18 3.32 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1189764 Nitrate, as Nitrogen 3.32 0.1 mg/L 04/04/18 04/04/18 20:55 JP 1 04/04/18 20:55 Nitrite, as Nitrogen ND 0.1 04/04/18 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1189950 ΤP Ammonia, as Nitrogen 04/09/18 04/10/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1190021 Total Kjeldahl Nitrogen 1 0.4 mg/L 04/11/18 04/12/18 ΤP Method: SM 9221-F Prep Method: Method QCBatchID: QC1189891 Coliform, E. Coli 1 MPN/100ml 04/04/18 18:50 04/07/18 19:20 Matrix: Water Client: IIRMES Collector: Client Sampled: 04/03/2018 12:31 Site: Sample #: 401365-006 Client Sample #: SW-01-D_180403 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 04/12/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1189764 Prep Method: Method Nitrate, as Nitrogen 8.76 0.1 04/04/18 04/04/18 21:12 JP 1 mg/L Nitrite, as Nitrogen 1 0.1 mg/L 04/04/18 04/04/18 21:12 JP Method: EPA 350.1 QCBatchID: QC1189950 Prep Method: Method Ammonia, as Nitrogen 1 0.1 ma/L 04/09/18 04/10/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1190021 Total Kjeldahl Nitrogen ND 0.4 04/11/18 04/12/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1189891 Coliform, E. Coli 30 MPN/100ml 04/04/18 18:50 04/07/18 19:20 SK T3

1

Matrix: Water Client: IIRMES Collector: Client
Sampled: 04/03/2018 13:19 Site:

Sample #: 401365-007 Client Sample #: GW-C-07_180403 Sample Type:

Analyte	Result	DF	RDL	Units	Prepared	Analyzed	By Note	es
Method: ALCH 4025	Prep Method: None				•	QCBatchl	D:	
Total Nitrogen	1.27	1	0.5	mg/L		04/12/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchl	D: QC11897	764
Nitrate, as Nitrogen	0.72	1	0.1	mg/L	04/04/18	04/04/18 21:28	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/04/18	04/04/18 21:28	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchl	D: QC11899	950
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchl	D: QC11900)21
Total Kjeldahl Nitrogen	0.550	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchl	D: QC11898	391
Coliform, E. Coli	<2	1	N	1PN/100ml	04/04/18 18:50	04/06/18 17:45	SK T	3

Matrix: Water Client: IIRMES Collector: Client

Sampled: 04/03/2018 13:37 **Site:**

Sample #: 401365-008	Client Sample #: GW-C-0	8_180403		Samp	ole Type:	
Analyte	Result	DF	RDL	Units	Prepared	Analyzed By Notes
Method: ALCH 4025	Prep Method: None					QCBatchID:
Total Nitrogen	1.84	1	0.5	mg/L		04/12/18 SLL
Method: EPA 300.0	Prep Method: Method					QCBatchID: QC1189764
Nitrate, as Nitrogen	1.84	1	0.1	mg/L	04/04/18	04/04/18 21:44 JP
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/04/18	04/04/18 21:44 JP
Method: EPA 350.1	Prep Method: Method					QCBatchID: QC1189950
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18 TP
Method: EPA 351.2	Prep Method: Method					QCBatchID: QC1190021
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18	04/12/18 TP
Method: SM 9221-F	Prep Method: Method					QCBatchID: QC1189891
Coliform, E. Coli	<2	1	-	MPN/100ml	04/04/18 18:50	04/06/18 17:45 SK T3

QCBatchID: QC1189764 Analys	t: JParedes	Method:	EPA 300.0					
Matrix: Water Analyze	d: 04/04/2018	Instrument:	AAICP (group)					
	Bla	ank Summai	y					
	Blank					1		
Analyte	Result	Units		RDL	No	tes		
QC1189764MB1	1			'		•		
Nitrate, as Nitrogen	ND	mg/L		0.1				
Nitrite, as Nitrogen	ND	mg/L		0.1				
Lab Cor	ntrol Spike/ Lab	Control Spi	ke Duplicate	e Summary	,			
	Spike Amount	Spike Result		Recoveries		Lim	its	
Analyte	LCS LCSD	LCS LCSI	O Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1189764LCS1								

Matrix Spike/Matrix Spike Duplicate Summary												
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189764MS1, QC1189764MSD1			,				•			Sc	urce:	401365-004
Nitrate, as Nitrogen	3.07	9.03	9.03	12.0	12.2	mg/L	99	101	1.7	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.96	9.17	mg/L	98	100	2.3	80-120	20	

9.01

9.02

mg/L

mg/L

100

99

90-110

90-110

9.03

9.15

Nitrate, as Nitrogen

Nitrite, as Nitrogen

OCPotobilly OC44900E0	nalvot-	trinh		N# - 4	المصماء	EDA 250.4						
QCBatchID: QC1189950 A	nalyst:	trinn		Wet	tnoa:	EPA 350.1						
Matrix: Water Ana	alyzed:	04/10/2	2018	Instrun	nent:	CHEM (group))					
			Bl	ank Sun	nmar	У						
			Blank									
Analyte			Result	Uni	its		RE	DL	No	tes		
QC1189950MB1				'						"		
Ammonia, as Nitrogen			ND	mg	J/L		0.	1				
Lab	Contr	ol Spi	ike/ Lab	Control	l Spil	ke Duplicate	e Sun	nmary				
		Spike	Amount	Spike R	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSE	O Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1189950LCS1			•									
Ammonia, as Nitrogen		5		4.68		mg/L	94			80-120		
	Mati	rix Sp	ike/Matı	rix Spike	Dup	olicate Sum	mary					
Sa	ample	Spike	Amount	Spike R	Result		Reco	overies		Limit	:S	
Analyte Ar	mount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189950MS1, QC1189950MSD1										So	urce.	401307-003
QOTTOSSSONOT, QOTTOSSSONODT										-	· u. oo.	

QCBatchID: QC1190021	Analyst:	trinh		М	ethod:	EPA 351.2						
Matrix: Water	Analyzed:	04/12/	2018	Instru	ument:	CHEM (group))					
			BI	ank Su	ımmar	ν						
			Blank									
Analyte			Result	U	Inits		RE	DL	No	tes		
QC1190021MB1												
Total Kjeldahl Nitrogen			ND	n	ng/L		0.	4				
La	ab Cont	rol Sp	ike/ Lab	Contro	ol Spik	ke Duplicate	e Sun	nmary				
		Spike	Amount	Spike	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1190021LCS1, QC1190021LCSD1	'											
Total Kjeldahl Nitrogen		2.5	2.5	2.7	2.7	mg/L	108	108	0	80-120	20	
	Mat	trix Sp	ike/Mati	rix Spil	ke Dup	licate Sum	mary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1190021MS1, QC1190021MSD1			,						•	Sc	urce:	400589-051
Total Kjeldahl Nitrogen	1.4	12.5	12.5	14	15	mg/L	101	109	6.9	80-120	20	
			Dup	licate S	Summa	ary						
		Sa	mple	Dup	licate				Limi	its		
Analyte		Am	ount	Am	ount	Units	R	PD	RP	D	1	Notes
QC1190021DUP1	· ·									Sc	urce:	400589-051

1.4

mg/L

0.0

20

1.4

Total Kjeldahl Nitrogen

Data Qualifiers and Definitions

Qualifiers

See Report Comments.

В Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

С Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

D2 Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit. D3 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

ı The sample was read outside of the method required incubation period.

Reported value is estimated J

The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample ı

data was reported with qualifier.

The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated М

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference. **M1**

The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not **M2**

within control limits. Sample result is estimated.

Sample chromatography does not match the specified TPH standard pattern. N₁

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

Sample was received without proper preservation according to EPA guidelines. P1

Temperature of sample storage refrigerator was out of acceptance limits.

The sample was preserved within 24 hours of collection in accordance with EPA 218.6. **P3** Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

s The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

Т Sample was extracted/analyzed past the holding time.

Т1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

Т3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

P2

DF **Dilution Factor**

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit

TIC Tentatively Identified Compounds

C-106

1250 Bellflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

		(CHAI	N-OF-0	CUST	ΓΟDΥ								pa	age		;	1 of 1	
	Client Name										RE	QUI	STE	D A	VALY	SES			
	The fact of the fa	1250 Bellflo																	
-		Long Beac	n, CA 9084	10			-								- 1				
	Project Contact Name Email Address		mail com				+			8									
		(310) 408-2					1												B
	Project Name/Number						1					_			- 14				l II
	P.O. Number		404-02				1	_				ego.					i n		
	Sampled By	RL					-	l iši		ø	as	Nit.							
	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ontainer Type	E. Coli	Ammonia	TKN	Nitrate	Nitrite	Total Nitrogen			4				
1	GW-A-03_180403	4/3/2018	09:03	Freshwater	3	Various	х	x	x	х	x	x							
2	GW-A-02_180403	4/3/2018	09:31	Freshwater	3	Various	X	x	x	x	x	х		170					
3	GW-A-04_180403	4/3/2018	09:59	Freshwater	3	Various	x	х	x	х	х	x							
4	GW-A-01_180403	4/3/2018	10:30	Freshwater	3	Various	х	х	x	х	x	x					1		
5	GW-F-02_180403	4/3/2018	11:17	Freshwater	3	Various	x	X	×	х	x	x							
6	SW-01-D_180403	4/3/2018	12:31	Freshwater	3	Various	х	х	х	x	x	х							
7	GW-C-07_180403	4/3/2018	13:19	Freshwater	3	Various	x	х	×	x	x	х					-		
8	GW-C-08_180403	4/3/2018	13:37	Freshwater	3	Various	х	x	х	x	x	x	1.4						
9		The Walter																	
10												- 1							
	Type of Ice used:	Wet	Blue	None		Signature:	_				RE	LINQL	ISHED	BY		DATI			
	Sample Preservative:	Yes	No			Signature.		1	7							1 172			
	TURNAROUND TIME NEEDED:	Standard				hio	u	L	_							1	141	04/	18
	COMMENTS:					Print;	1		. 1									11	
	CONTRACTOR OF THE STATE OF THE					Mou		en	N	no	1					TIME	4		
	TKN Preserved with Sulfurio	Acid				Company: IIR	MES										3:3	32	
9	Please analyze E. coli even t	hough it	is past h	olding tim	ie		-		_			RECE	VED B	Y	_	-			
						Signature:		1								DATI	E:		
						10	. 1/	h	~								04/	04/1	V
						Print:	1	^		11					-	-	1		0
							/ (Sue	My	K	in					TIME			
	Project ID#	401	765	5		Company:		EV.	()								15	:32	2

SAMPLE ACCEPTANCE CHECKLIST

Section 1	A.F. Son Service								
Client: IIRMES	Project: C1023-180404-02								
Date Received: 4/4/18	Sampler's Name Present:	√ Yes	No						
Section 2									
Sample(s) received in a cooler? \checkmark Yes, How many? $\underline{1}$	No (skip section 2)		le Temp (°C) (No Cooler)						
Sample Temp (°C), One from each cooler: #1: 0.7 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptance the same day as sample receipt to have a higher temper Shipping Information:	#2:#3:_ eptance range is < 10°C but not frozen). I	#4:_ t is acceptable	e for sample						
Section 3									
Was the cooler packed with: ✓ Ice ☐ Ice Packs☐ Paper ☐ None Cooler Temp (°C): #1: -0.1 #2:	Bubble Wrap Styro	ofoam #4:							
Section 4		YES	NO	N/A					
Was a COC received?		1							
Are sample IDs present?		1							
Are sampling dates & times present?		1							
Is a relinquished signature present?		1	F = 1						
Are the tests required clearly indicated on the COC?		1	. , , , 1						
Are custody seals present?			1						
If custody seals are present, were they intact?				1					
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	1							
Did all samples arrive intact? If no, indicate in Section 4	1 below.	1							
Did all bottle labels agree with COC? (ID, dates and tim	es)	1							
Were the samples collected in the correct containers for	or the required tests?	1							
Are the containers labeled with the correct prese	rvatives?	1		100					
Is there headspace in the VOA vials greater than 5-6 m	m in diameter?			1					
Was a sufficient amount of sample submitted for the r	equested tests?	1							
Section 5 Explanations/Comments E. coli is past holding time.									
Section 6 For discrepancies, how was the Project Manager notifi	ed? Verbal PM Initials: Email (email sent to/		/						

Inthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal

Date:_

Completed By:

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03c

P.O. #: C1023-180405-01

Lab Request: 401403
Report Date: 04/13/2018
Date Received: 04/05/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
401403-001	GW-B-03_180404
401403-002	GW-C-BK-06_180404
401403-003	GW-D-07_180404
401403-004	SW-03-U_180404
401403-005	GW-A-07_180404
401403-006	SW-02-D 180404

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Client: IIRM	ES		C	ollector: Client			
Sampled: 04/04/2018 09:02	Site:							
Sample #: 401403-001	Client Sample #: GW-E	3-03_180404		Samp	le Type:			
Analyte	Resu	lt DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID:		
Total Nitrogen	2.13	1	0.5	mg/L		04/13/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID:	QC	1189809
Nitrate, as Nitrogen	2.13	1	0.1	mg/L	04/05/18	04/05/18 17:07	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/05/18	04/05/18 17:07	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:	: QC	1189951
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID:	QC	1190021
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:	QC	1189892
Coliform, E. Coli	<2	1	M	IPN/100ml	04/05/18 18:45	04/07/18 17:55	ΙP	T3
Matrix: Water	Client: IIRM	-			ollector: Client			
Sampled: 04/04/2018 10:30	Site:	-3		C	onector. Chefit			
Sample #: 401403-002	Client Sample #: GW-0	C-BK-06 180404		Samp	le Type:			
-								
Analyte	Resu	lt DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None 7.40	1	0.5			QCBatchID: 04/13/18	SLL	
Total Nitrogen		ı	0.5	mg/L				
Method: EPA 300.0	Prep Method: Method				0.4/0.5/4.0	QCBatchID:		21189809
Nitrate, as Nitrogen	0.10 ND	1	0.1	mg/L	04/05/18		JP JP	
Nitrite, as Nitrogen		1	0.1	mg/L	04/05/18			
Method: EPA 350.1	Prep Method: Method				0.4/0.0/4.0	QCBatchID:		1189951
Ammonia, as Nitrogen	6.51	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID:		21190021
Total Kjeldahl Nitrogen	7.3	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:	QC	1189892
Coliform, E. Coli	2	1	N	IPN/100ml	04/05/18 18:45	04/08/18 17:35	MG	T3
Matrix: Water	Client: IIRM	ES .		C	ollector: Client			
Sampled: 04/04/2018 10:55	Site:							
Sample #: 401403-003	Client Sample #: GW-I	D-07_180404		Samp	le Type:			
Analyte	Resu	lt DF	RDL	Units	Prepared	Analyzed	Rv	Notes
Method: ALCH 4025	Prep Method: None	it Di	NDL	Offics	Trepared	QCBatchID:		140103
Total Nitrogen	0.80	1	0.5	mg/L			SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID:	QC	21189809
Nitrate, as Nitrogen	0.80	1	0.1	mg/L	04/05/18		JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/05/18	04/05/18 17:40	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:	: QC	C1189951
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18		TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID:	: Q0	21190021
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18		TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:		1189892
Coliform, E. Coli	2	1	I/	IPN/100ml	04/05/18 18:45	04/08/18 17:35		T3
	-	<u> </u>	10	14, 1001111	5 1/55/10 10.40	5 17 557 15 17 .50		

Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/04/2018 12:11 Sample #: 401403-004	Site: Client Sample #: SW-03-U	I 100404		Samn	lo Turnos			
3ample #. 401403-004	Client Sample #. SW-03-0	0_160404		Samp	le Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None	1	0.5			QCBatchID: 04/13/18	SLL	
Total Nitrogen	1.42	1	0.5	mg/L				
Method: EPA 300.0	Prep Method: Method				0.4/0.5/4.0	QCBatchID:		1189809
Nitrate, as Nitrogen	0.90	1	0.1	mg/L	04/05/18	04/05/18 17:56	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/05/18		JP	
Method: EPA 350.1	Prep Method: Method				0.4/0.0/4.0	QCBatchID:		1189951
Ammonia, as Nitrogen	ND	11	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID		1190021
Total Kjeldahl Nitrogen	0.518	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:		1189892
Coliform, E. Coli	30	1	N	1PN/100ml	04/05/18 18:45	04/08/18 17:35	MG	Т3
Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/04/2018 12:56	Site:							
Sample #: 401403-005	Client Sample #: GW-A-0	7_180404		Samp	le Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Bv	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID:		
Total Nitrogen	12.4	1	0.5	mg/L		04/13/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID	: Q0	1189809
Nitrate, as Nitrogen	12.4	1	0.1	mg/L	04/05/18	04/05/18 18:13	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/05/18	04/05/18 18:13	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:	: Q0	1189951
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID:	: Q0	1190021
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:	: Q0	1189892
Coliform, E. Coli	<2	1	N	1PN/100ml	04/05/18 18:45	04/07/18 17:55	ΙP	T3
Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/04/2018 13:27	Site:			C	bilector: Client			
Sample #: 401403-006	Client Sample #: SW-02-E	D_180404		Samp	le Type:			
Analysis	Passilt	DE	DDI	I Indian	Duamanad	A a l a .l	D	Mataa
Analyte Method: ALCH 4025	Prep Method: None	DF	RDL	Units	Prepared	Analyzed QCBatchID:		Notes
Total Nitrogen	0.59	1	0.5	mg/L			SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID:		1189809
Nitrate, as Nitrogen	0.59	1	0.1	mg/L	04/05/18	04/05/18 18:29	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/05/18		JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:		1189951
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18		TD	. 100001
Method: EPA 351.2	Prep Method: Method			<u> </u>		QCBatchID:		1190021
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18	04/12/18	TP	71100021
Method: SM 9221-F	Prep Method: Method	•	0.1			QCBatchID:		1180802
Coliform, E. Coli	17	1	N.	1PN/100ml	04/05/18 18:45	04/08/18 17:35		T3
Johnson, L. John	17	<u> </u>	IV	11 1W/1001111	07/03/10 10.43	0-,100/10 17.00	IVIO	13

QCBatchID:QC1189809Analyst:JParedesMethod:EPA 300.0Matrix:WaterAnalyzed:04/05/2018Instrument:AAICP (group)

Blank Summary												
	Blank											
Analyte	Result	Units	RDL	Notes								
QC1189809MB1		•		•								
Bromide	ND	mg/L	0.3									
Chloride	ND	mg/L	1									
Nitrate, as Nitrogen	ND	mg/L	0.1									
Nitrite, as Nitrogen	ND	mg/L	0.1									
Sulfate	ND	mg/L	0.5									

Lab Control Spike/ Lab Control Spike Duplicate Summary											
	Spike Amount	Spike Result		Recoveries		Limi	ts				
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes			
QC1189809LCS1	•						•				
Bromide	15	14.5	mg/L	97		90-110					
Chloride	100	99.6	mg/L	100		90-110					
Nitrate, as Nitrogen	9.03	9.06	mg/L	100		90-110					
Nitrite, as Nitrogen	9.15	8.92	mg/L	97		90-110					
Sulfate	50	50.3	mg/L	101		90-110					

	Mat	rix Sp	ike/Mati	rix Spil	ke Dupl	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	overies		Limit	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189809MS1, QC1189809MSD1						•	1			So	urce:	401250-001
Bromide	0.424	15	15	14.7	14.7	mg/L	95	95	0.0	80-120	20	
Chloride	84.4	100	100	179	178	mg/L	95	94	0.6	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	9.12	9.17	mg/L	101	102	0.5	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.57	8.58	mg/L	94	94	0.1	80-120	20	
Sulfate	12.9	50	50	62.9	62.8	mg/L	100	100	0.2	80-120	20	
QC1189809MS2										Sc	urce:	401253-001
Bromide	0.397	15		14.7		mg/L	95			80-120		
Chloride	86.3	100		180		mg/L	94			80-120		
Nitrate, as Nitrogen	ND	9.03		9.18		mg/L	102			80-120		
Nitrite, as Nitrogen	ND	9.15		8.52		mg/L	93			80-120		
Sulfate	12.9	50		63.0		mg/L	100			80-120		

alvot-	triph		NA	thad:	EDA 250.1						
aıyst:	uinn		ivie	ınoa:	EPA 350.1						
yzed:	04/10/2	2018	Instrur	nent:	CHEM (group)						
		Bl	ank Sun	nmar	У						
		Blank									
		Result	Un	its		RE	DL	No	tes		
									ļ		
		ND	mg	g/L		0.	1				
Contr	ol Spi	ike/ Lab	Contro	l Spil	ke Duplicate	e Sun	nmary				
	Spike /	Amount	Spike F	Result		Reco	veries		Lim	its	
	LCS	LCSD	LCS	LCSE	D Units	LCS	LCSD	RPD	%Rec	RPD	Notes
		•									
	5		4.83		mg/L	97			80-120		
Matr	rix Sp	ike/Matı	rix Spike	e Dup	olicate Sum	mary					
nple	Spike /	Amount	Spike F	Result		Reco	overies		Limit	ts	
ount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
1					,				Sc	urce:	401403-001
	Control Matinple	Spike LCS 5 Matrix Spinple Spike A	Blank Result ND Control Spike/ Lab Spike Amount LCS LCSD 5 Matrix Spike/Maturiple Spike Amount	Blank Sun Blank Result Un ND mg Control Spike/ Lab Control Spike Amount Spike F LCS LCSD LCS 5 4.83 Matrix Spike/Matrix Spike nple Spike Amount Spike F	Blank Summar Blank Result Units ND mg/L Control Spike/ Lab Control Spile Spike Amount Spike Result LCS LCSD LCS LCSD 5 4.83 Matrix Spike/Matrix Spike Dup nple Spike Amount Spike Result	Blank Summary Blank Result Units ND mg/L Control Spike/ Lab Control Spike Duplicate Spike Amount Spike Result LCS LCSD LCS LCSD Units 5 4.83 mg/L Matrix Spike/Matrix Spike Duplicate Sumple Spike Amount Spike Result		Blank Summary Blank Result Units RDL	Blank Summary Blank Result Units RDL No ND mg/L 0.1 Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result LCS LCSD LCS LCSD Units LCS LCSD RPD 5 4.83 mg/L 97 Matrix Spike/Matrix Spike Duplicate Summary spike Amount Spike Result Recoveries LCS LCSD RPD	Blank Summary Blank Result Units RDL Notes	Blank Summary Blank Result Units RDL Notes ND mg/L 0.1 Control Spike/ Lab Control Spike Duplicate Summary Spike Amount Spike Result Recoveries Limits LCS LCSD LCS LCSD Units LCS LCSD RPD %Rec RPD 5 4.83 mg/L 97 80-120 Matrix Spike/Matrix Spike Duplicate Summary nple Spike Amount Spike Result Recoveries Recoveries RPD Matrix Spike/Matrix Spike Duplicate Summary nple Spike Amount Spike Result Recoveries Limits nple Spike Amount Spike Result Recoveries Limits nple Spike Amount Spike Result Recoveries Limits nple Spike Amount Spike Result Recoveries RPD %Rec RPD

Matrix: Water	Analyzed:	04/12/	2018	Instru	ument: (CHEM (group)						
			BI	ank Su	ımmary	1						
			Blank									
Analyte			Result	U	Inits		RE	DL	No	tes		
QC1190021MB1	•				,					'		
Total Kjeldahl Nitrogen			ND	n	ng/L		0.	4				
	Lab Cont	rol Sp	ike/ Lab	Contro	ol Spike	e Duplicate	e Sun	nmary				
		Spike	Amount	Spike	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPE	Notes
QC1190021LCS1, QC1190021LCSD1	•											
Total Kjeldahl Nitrogen		2.5	2.5	2.7	2.7	mg/L	108	108	0	80-120	20	
	Ма	trix Sp	ike/Mati	rix Spil	ke Dupl	icate Sum	mary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1190021MS1, QC1190021MSD1	"					1		<u> </u>		Sc	ource:	400589-05
Total Kjeldahl Nitrogen	1.4	12.5	12.5	14	15	mg/L	101	109	6.9	80-120	20	
			Dup	licate S	Summa	ry						
		Sa	mple	Dup	licate				Limi	its		
Analyte		Am	nount	Am	ount	Units	R	PD	RP	D	ı	Notes
QC1190021DUP1	•									Sc	ource:	400589-051

1.4

mg/L

0.0

20

1.4

Method: EPA 351.2

Analyst: trinh

QCBatchID: QC1190021

Total Kjeldahl Nitrogen

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.
 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit

TIC Tentatively Identified Compounds

C-115

_	ENVIRONMENTS OF		HALL			Blvd., Long		7.25						page		1	of 1	
			HAI	I-OF-C	031	UDI	-	-			RF	OUES	TED A	NAL	YSES			
	Client Name I	IRMES 1250 Bellflo	wer Blud				-	-1		- T	-							
				0														
-	Project Contact Name	ong Beach	, CA 9004	Die Sample Matrix Quantity Type ui Ey Ey Ey Ey Ey Ey Ey Ey Ey Ey Ey Ey Ey		1 1												
-	Email Address	along56@gi	mail.com										1 1			4 1		
		(310) 408-2					1					-	4 0					
	Project Name/Number	121-18-03C	105-01							1		oge			4			
_	Sampled By		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					onia		a		불	4 1			1 7		
C	ient Sample ID / Description	Sample Date	Sample					Ammo	TKN	Nitrat	Nitrite	Total Nitrogen						
-		- AV 22.1A	09:02	Freshwater	3	Various	x	x	x	x	X	x				1- 5		
-	GW-B-03_180404	4/4/2018					x	x	х	x	x	x						
	GW-C-BK-06_180404	4/4/2018	10:30	COLF THE			-	×	x	x	x	x						
	GW-D-07_180404	4/4/2018	10:55	Freshwater	3	Various	-					x					7 - 1	
	SW-03-U_180404	4/4/2018	12:11	Freshwater	3	Various						100				-		
	GW-A-07_180404	4/4/2018	12:56	Freshwater	3	Various	X	×	X			X		-		4		3
	SW-02-D_180404	4/4/2018	13:27	Freshwater	3	Various	×	X	х	X	X	×			-	+		-
-	377-02-0_100-0-1			1													20	
-													. 1				W-1-4	
-														1-1				
				-	-		1											
							4				R	LINQUIS	HED BY					
	Type of Ice used:		Blue	None		Signature:									DA	TE:		
	Sample Preservative:		No		_	1		11	-	_						4/6	5/18	2
	TURNAROUND TIME NEEDED:	Standard				KM	100	-0			_				-	-1/:) 10)
C	OMMENTS:					Print:	deer	1.10	an	-5	hav	/			TII	ME:		
	IAN Dunnamind with Cultural	c Acid				Company: II	RMES	00		Y						15:	17	
	KN Preserved with Sulfuri		1.00		1.2	J												
F	lease analyze E. coli even	though if	t is past	notaing tir	ne	Signature:	NA		1			RECEIV	FDRA		DA	ATE:	1	
						Signature.	M)							4/05	/18	
						Print:	1	ZA	an E	PADL	US				TI	ME: /<	:17	
	Project ID	4				Print: // Company:	FAI	TH	N	21						10	17	

SAMPLE ACCEPTANCE CHECKLIST

Section 1	124 40 025			
Client: IIRMES	Project: 121-18-03c			
Date Received: 4/5/18	Sampler's Name Present:	√Yes	No	
Section 2 Sample(s) received in a cooler? ✓ Yes, How many? Sample Temp (°C), One from each cooler: #1: 1.8 (Acceptance range is < 6°C but not frozen (for Microbiology samples, active same day as sample receipt to have a higher temp.	#2: #3:_ ceptance range is < 10°C but not frozen). I	#4:_ t is acceptable		
Section 3 Was the cooler packed with: Paper None Cooler Temp (°C): #1: 0.3 #2:	s Bubble Wrap Styre Other#3:	ofoam #4:		
Section 4		YES	NO	N/A
Was a COC received?	1÷1	1	110	14/11
Are sample IDs present?		V		,
Are sampling dates & times present?		1		-
Is a relinquished signature present?		1	- 3	
Are the tests required clearly indicated on the COC?			1.	
Are custody seals present?			V	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommende	ed for Microbiology samples)	1		
Did all samples arrive intact? If no, indicate in Section	4 below.	V		
Did all bottle labels agree with COC? (ID, dates and ti	mes)	1		
Were the samples collected in the correct containers	for the required tests?	/		
Are the containers labeled with the correct pres	servatives?	V		
Is there headspace in the VOA vials greater than 5-6 r	mm in diameter?			V
Was a sufficient amount of sample submitted for the	requested tests?	1	1	
Section 5 Explanations/Comments				
Section 6				
For discrepancies, how was the Project Manager noti Project Manager's response:	fied? Verbal PM Initials: Email (email sent to	_ Date/Time /on):	/	_
	U_Date: 04/05/18 y of Montrose Environmental Group ,Inc.	-		

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03d

P.O. #: C1023-180406-01

Lab Request: 401461
Report Date: 04/16/2018
Date Received: 04/06/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
401461-001	SW-02-U_180405
401461-002	GW-D-05_180405
401461-003	GW-D-05_180405-DUP
401461-004	GW-G-02_180405
401461-005	GW-B-04_180405
401461-006	GW-B-04 180405-EQ

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/05/2018 09:38	Site:							
Sample #: 401461-001	Client Sample #: SW-02-U	_180405		Samp	le Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID):	
Total Nitrogen	ND	1	0.5	mg/L		04/16/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID): Q(C1189859
Nitrate, as Nitrogen	0.45	1	0.1	mg/L	04/06/18	04/06/18 21:59	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/06/18	04/06/18 21:59	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID): Q(C1189951
Ammonia, as Nitrogen	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID): Q(C1190022
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID): Q(C1189895
Coliform, E. Coli	30	1	M	IPN/100ml	04/06/18 18:30	04/09/18 15:15	ΙP	T3
	011 1121/22							
Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/05/2018 11:02 Sample #: 401461-002	Site: Client Sample #: GW-D-05	190405		Samn	le Type:			
Sample #. 401461-002	Client Sample #. GW-D-05	_160405		Samp	ne Type.			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None					QCBatchID		
Total Nitrogen	3.54	1	0.5	mg/L		04/16/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID		C1189859
Nitrate, as Nitrogen	0.24	1	0.1	mg/L	04/06/18	04/06/18 22:15	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	04/06/18	04/06/18 22:15	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID): Q(C1189951
Ammonia, as Nitrogen	2.82	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Method					QCBatchID): Q(C1190022
Total Kjeldahl Nitrogen	3.3	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID): Q(C1189895
Coliform, E. Coli	<2	1	M	IPN/100ml	04/06/18 18:30	04/08/18 16:20	MG	Т3
Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 04/05/2018 11:02	Site:			C	onector. Cherit			
Sample #: 401461-003	Client Sample #: GW-D-05	180405-DUP		Samp	le Type:			
· -								
Analyte Method: ALCH 4025	Prep Method: None	DF	RDL	Units	Prepared	Analyzed QCBatchID		Notes
Total Nitrogen	3.51	1	0.5	mg/L		04/16/18	SLL	
		<u>'</u>	0.5	1119/ L				24400050
Method: EPA 300.0	Prep Method: Method	1	0.1	ma/l	04/06/19	QCBatchID		51189859
Nitrate, as Nitrogen Nitrite, as Nitrogen	0.21 ND	1 1	0.1 0.1	mg/L mg/L	04/06/18 04/06/18	04/06/18 22:32 04/06/18 22:32		
		ı	0.1	mg/L	U-7/00/10			21100051
Method: EPA 350.1 Ammonia, as Nitrogen	Prep Method: Method 2.92	1	0.1	mg/L	04/09/18	QCBatchID 04/10/18	TD	71109957
		Į.	0.1	my/L	0-1/03/10			24400000
Method: EPA 351.2	Prep Method: Method	1	0.4	ma/l	04/14/49	QCBatchID		71190022
Total Kjeldahl Nitrogen	3.3	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Method			IDN1/4.22 :	0.4/0.0/4.5 5 . 5 . 5	QCBatchID		
Coliform, E. Coli	<2	1	M	IPN/100ml	04/06/18 18:30	04/08/18 16:20	MG	Т3

Matrix: Water		IIRMES			Co	ollector: Client			
Sampled: 04/05/2018 12:45	Site:								
Sample #: 401461-004	Client Sample #:	GW-G-02_	_180405		Samp	le Type:			
Analyte	F	Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: Non	ne					QCBatchID	•	
Total Nitrogen		15.5	1	0.5	mg/L		04/16/18	SLL	
Method: EPA 300.0	Prep Method: Met	hod					QCBatchID	: Q0	1189859
Nitrate, as Nitrogen		15.5	1	0.1	mg/L	04/06/18	04/06/18 22:49	JP	
Nitrite, as Nitrogen		ND	1	0.1	mg/L	04/06/18	04/06/18 22:49	JP	
Method: EPA 350.1	Prep Method: Met	hod					QCBatchID	: Q0	1189951
Ammonia, as Nitrogen		ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Met	hod					QCBatchID	: Q0	1190022
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Met	hod					QCBatchID	: Q0	1189895
Coliform, E. Coli		<2	1	N	1PN/100ml	04/06/18 18:30	04/09/18 15:15	MG	T3
Matrix: Water	Olioni	IIRMES				ollector: Client			
Sampled: 04/05/2018 14:06	Site:	IIKIVIES			C	ollector: Client			
Sample #: 401461-005	Client Sample #:	GW-R-04	180405		Samn	le Type:			
Janipie #. <u>401401-003</u>	Onem Campie #.	OW D 04_	_100403		Oamp	те туре.			
Analyte		Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: Non						QCBatchID		
Total Nitrogen		ND	1	0.5	mg/L		04/16/18	SLL	
Method: EPA 300.0	Prep Method: Met						QCBatchID		1189859
Nitrate, as Nitrogen		ND	1	0.1	mg/L	04/06/18	04/06/18 23:06	JP 	
Nitrite, as Nitrogen		ND	1	0.1	mg/L	04/06/18	04/06/18 23:06	JP	
Method: EPA 350.1	Prep Method: Met						QCBatchID		1189951
Ammonia, as Nitrogen		ND	1	0.1	mg/L	04/09/18	04/10/18	TD	
Method: EPA 351.2	Prep Method: Met	hod					QCBatchID		1190022
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	04/11/18	04/12/18	TP	
Method: SM 9221-F	Prep Method: Met	hod					QCBatchID	: Q0	21189895
Coliform, E. Coli		<2	1	N	1PN/100ml	04/06/18 18:30	04/09/18 15:15	ΙP	Т3
Matrix: Water	Client:	IIRMES			C	ollector: Client			
Sampled: 04/05/2018 14:06	Site:	III (IVILO			0.	oncotor. Oncore			
Sample #: 401461-006	Client Sample #:	GW-B-04_	_180405-EQ		Samp	le Type:			
Augusta		2	DE	DDI	Heite	Duamanad	Analomad	Dec	Mataa
Analyte Method: ALCH 4025	Prep Method: Non	Result	DF	RDL	Units	Prepared	Analyzed QCBatchID		Notes
Total Nitrogen	·	2.17	1	0.5	mg/L			SLL	
Method: EPA 300.0	Prep Method: Met				<u> </u>		QCBatchID		C1189859
Nitrate, as Nitrogen	i rep ivication. Iviet	2.17	1	0.1	mg/L	04/06/18	04/06/18 23:23	JP	71100000
Nitrite, as Nitrogen		ND	1	0.1	mg/L	04/06/18	04/06/18 23:23	JP	
Method: EPA 350.1	Prep Method: Met		· · · · · · · · · · · · · · · · · · ·		-		QCBatchID		C1189951
Ammonia, as Nitrogen	i rep ivietilou. iviet	ND	1	0.1	mg/L	04/09/18	04/10/18	TD	71103331
Method: EPA 351.2	Drop Mothad: Mat		'	· · · ·	9, =	0 1,00,10			21190022
Total Kjeldahl Nitrogen	Prep Method: Met	ND	1	0.4	mg/L	04/11/18	QCBatchID 04/12/18	TP	1190022
	David Mark 1 1111		Ī	0.4	IIIg/L	U 1 /11/10			24400005
Method: SM 9221-F	Prep Method: Met		4	R .	IDNI/100!	04/06/40 40:00	QCBatchID		C1189895
Coliform, E. Coli		<2	1	N	1PN/100ml	04/06/18 18:30	04/09/18 15:15	۱۲	Т3

QCBatchID:QC1189859Analyst:JParedesMethod:EPA 300.0Matrix:WaterAnalyzed:04/06/2018Instrument:AAICP (group)

	Blan	k Summary			
	Blank				
Analyte	Result	Units	RDL	Notes	
QC1189859MB1		-			
Bromide	ND	mg/L	0.3		
Chloride	ND	mg/L	1		
Nitrate, as Nitrogen	ND	mg/L	0.1		
Nitrate, as NO3	ND	mg/L	0.44		
Nitrite, as Nitrogen	ND	mg/L	0.1		
Nitrite, as NO2	ND	mg/L	0.33		
Sulfate	ND	mg/L	0.5		

L	ab Control Spike/ La	b Control Spik	e Duplica	te Summar	y			
	Spike Amount	Spike Result		Recoveries		Limit	s	
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSI	RPD	%Rec	RPD	Notes
QC1189859LCS1			•		•			
Bromide	15	14.8	mg/L	99		90-110		
Chloride	100	100	mg/L	100		90-110		
Nitrate, as Nitrogen	9.03	9.09	mg/L	101		90-110		
Nitrate, as NO3	40	40.3	mg/L	101		90-110		
Nitrite, as Nitrogen	9.15	9.12	mg/L	100		90-110		
Nitrite, as NO2	30	29.9	mg/L	100		90-110		
Sulfate	50	50.4	mg/L	101		90-110		

	Mat	trix Sp	ike/Mati	rix Spik	ke Dupli	cate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	s	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1189859MS1, QC1189859MSD1									•	So	urce:	401346-00
Bromide	0.426	15	15	15.3	15.5	mg/L	99	100	1.3	80-120	20	
Chloride	82.5	100	100	181	182	mg/L	99	100	0.6	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	9.47	9.60	mg/L	105	106	1.4	80-120	20	
Nitrate, as NO3	ND	40	40	41.9	42.5	mg/L	105	106	1.4	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.96	9.11	mg/L	98	100	1.7	80-120	20	
Nitrite, as NO2	ND	30	30	29.4	29.9	mg/L	98	100	1.7	80-120	20	
Sulfate	12.2	50	50	63.4	64.3	mg/L	102	104	1.4	80-120	20	
QC1189859MS2										So	urce:	401349-00
Bromide	0.406	15		15.5		mg/L	101			80-120		
Chloride	77.8	100		178		mg/L	100			80-120		
Nitrate, as Nitrogen	ND	9.03		9.60		mg/L	106			80-120		
Nitrate, as NO3	ND	40		42.5		mg/L	106			80-120		
Nitrite, as Nitrogen	ND	9.15		9.10		mg/L	99			80-120		
Nitrite, as NO2	ND	30		29.8		mg/L	99			80-120		
Sulfate	12.6	50		64.1		mg/L	103			80-120		

lvot-	triph		N/a	bod.	EDA 250.1						
nyst:	uinn		ivie	ınoa:	EPA 350.1						
/zed:	04/10/2	2018	Instrur	nent:	CHEM (group)						
		BI	ank Sun	nmar	у						
		Blank									
		Result		its		RDL		Notes			
-					-				Į.		
		ND	mg	ı/L		0.	1				
ontr	ol Spi	ike/ Lab	Contro	l Spil	ke Duplicate	e Sun	nmary				
Spike Amount		Spike Result			Recoveries			Limits			
	LCS	LCSD	LCS	LCSE	O Units	LCS	LCSD	RPD	%Rec	RPD	Notes
•											
	5		4.83		mg/L	97			80-120		
Matr	rix Sp	ike/Matı	rix Spike	Dup	olicate Sum	mary					_
nple	Spike	Amount	Spike Result			Recoveries			Limits		
ount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
									Sc	urce:	401403-001
D	5	5	5.35	5.38			108	0.6	80-120	20	
	Zed: Contr Maturial	Spike LCS Matrix Spiple Spike	Blank Result ND Control Spike/ Lab Spike Amount LCS LCSD Matrix Spike/Maturiple Spike Amount	Blank Sun Blank Result Un ND mg Control Spike/ Lab Control Spike Amount Spike R LCS LCSD LCS 5 4.83 Matrix Spike/Matrix Spike R pple Spike Amount Spike R	Blank Summar Blank Result Units ND mg/L Control Spike/ Lab Control Spike Spike Amount Spike Result LCS LCSD LCS LCSD 5 4.83 Matrix Spike/Matrix Spike Dup pple Spike Amount Spike Result	Blank Summary Blank Result Units ND mg/L Control Spike/ Lab Control Spike Duplicate Spike Amount LCS LCSD LCSD Units 5 4.83 mg/L Matrix Spike/Matrix Spike Duplicate Sumple Spike Amount Spike Result LCS LCSD Spike Duplicate Sumple Spike Amount Spike Result Spike Result Spike Duplicate Sumple Spike Amount Spike Result Spike Result Spike Result					

QCBatchID: QC1190022 Analy	st: trinh		Method	: EPA 351.2						
Matrix: Water Analyz	ed: 04/12	2/2018	Instrumen	: CHEM (group)					
		В	lank Summ	ary						
		Blank								
Analyte		Result	Units		RD	L	No	tes		
QC1190022MB1	'		- '		•					
Total Kjeldahl Nitrogen		ND	mg/L		0.4	4				
Lab Co	ntrol S _l	oike/ Lab	Control Sp	ike Duplicat	e Sum	nmary				
	Spike	e Amount	Spike Resu	t	Recov	veries		Lim	its	
Analyte	LCS	LCSD	LCS LC	SD Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1190022LCS1										
Total Kjeldahl Nitrogen	2.5		2.5	mg/L	100			80-120		
Л	latrix S	pike/Mat	rix Spike Di	ıplicate Sum	mary					
Samp	le Spike	e Amount	Spike Resu	t	Reco	veries		Limi	ts	
Analyte Amou	nt MS	MSD	MS MS	D Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1190022MS1, QC1190022MSD1	'		•	•	•			Sc	ource:	401455-002
Total Kjeldahl Nitrogen 0.27	3 12.5	12.5	14 14	mg/L	110	110	0.0	80-120	20	

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

Page of the elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit. Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

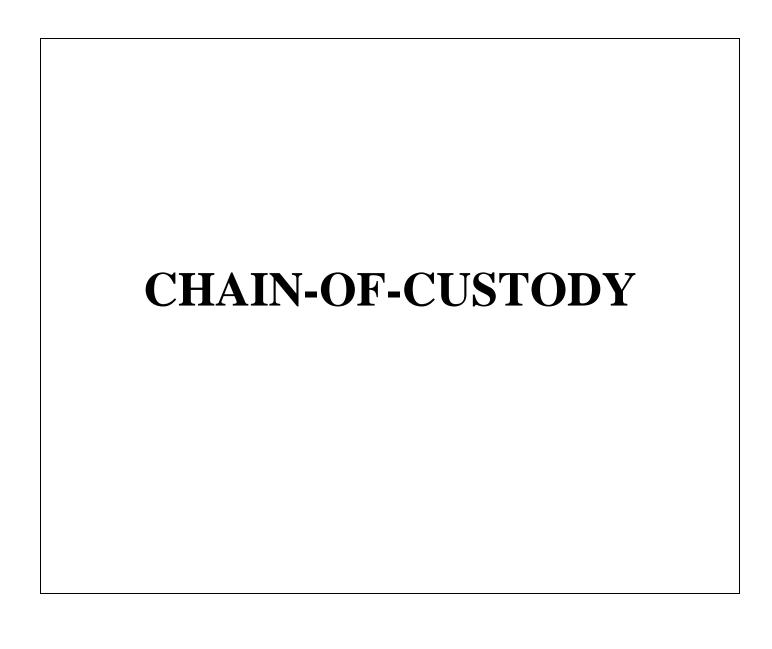
NR Not Reported. See Report Comments.

RDL Reporting Detection Limit

TIC Tentatively Identified Compounds

C-124

			CHAI	N-OF-	CUST	TODY								pag	je			1 of 1		
	Client Name	IIRMES	THE STATE								RE	QUE	STE	ANA C	ALYS	SES				
	Address	1250 Bellflo	ower Blvd									719								
_			h, CA 9084	0			4			17									- 1	
-			mail som				4		l n					1		10			- 1	
-							4													
					- 300		1					2								
			406-01		0.0.]					ger				1				
	Sampled By	RL						nia		0		je								
	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ontainer Type	E. Coli	Ammonia	T.	Nitrate	Nitrite	Total Nitrogen								
1	SW-02-U_180405	4/5/2018	09:38	Freshwater	3	Various	х	x	x	x	x	х								
2	GW-D-05_180405	4/5/2018	11:02	Freshwater	3	Various	×	×	x	x	X	x	_),	1 6				5.1		
3	GW-D-05_180405-DUP	4/5/2018	11:02	Freshwater	3	Various	×	x	x	x	X	x								
4	GW-G-02_180405	4/5/2018	12:45	Freshwater	3	Various	×	x	x	X	X	x								
5	GW-B-04_180405	4/5/2018	14:06	Freshwater	3	Various	×	×	x	×	X	×		1						
6	GW-B-04_180405-EQ	4/5/2018	14:06	Freshwater	3	Various	×	x	x	x	x	x								
7																				
8																				
9																				
10												T								
		Wet	Blue	None		Signature:		_	-		RE	LINQU	SHED B	Υ		DATE				- 1
	Sample Preservative:	Yes	No			1			3							1				
		Standard				KIN	e	1								4	1/6	118		
	COMMENTS:					Print: Lind.	001	lan	10 i - C	ma	10/									
L.,		A Desir				Company: IIR		VEU	יינון	ria	V					TIME				
	IKN Preserved with Sulturio	ACIO				Company: IIR	INIES									11.6	15.	35		
	Please analyze E. coli even t	hough it	is past h	nolding tin	ne					_		RECEIV	/ED BY							
						Signature:	,									DATE	:			~~
		Date Time Matrix		Can	p		_							4	16	153	,			
						Print:	61	Kim								TIME		Kani		
	Project ID#					Company:	Th								L.			123	5	



SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: IIRMES	Project:			
Date Received: 4/6/18	Sampler's Name Present:	Yes	No	
Section 2			in a sale a	
Sample(s) received in a cooler? $\boxed{\checkmark}$ Yes, How many? $\boxed{1}$	No (skip section 2)		e Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 0.8 (Acceptance range is < 6°C but not frozen (for Microbiology samples, accepthe same day as sample receipt to have a higher temperal Shipping Information:	tance range is < 10°C but not frozen). It is			s collected
Section 3				
Was the cooler packed with: Value	Bubble Wrap Styrof Other#3:	oam _#4:		
Section 4		YES	NO	N/A
Was a COC received?		1/		
Are sample IDs present?		1		
Are sampling dates & times present?		V	10	
Is a relinquished signature present?) i	
Are the tests required clearly indicated on the COC?		1	[]	
Are custody seals present?			1	
If custody seals are present, were they intact?		1,10		V
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	/		
Did all samples arrive intact? If no, indicate in Section 4	below.	V	1 2	
Did all bottle labels agree with COC? (ID, dates and time	es)	V		
Were the samples collected in the correct containers fo	or the required tests?	V		
Are the containers labeled with the correct preser	vatives?			,
Is there headspace in the VOA vials greater than 5-6 mn	n in diameter?	/	-	1
Was a sufficient amount of sample submitted for the re	equested tests?			
Section 5 Explanations/Comments				
Section 6	No. Called San Land			
For discrepancies, how was the Project Manager notifie	ed? Verbal PM Initials: Email (email sent to/o		/	
Project Manager's response: Completed By:	Date: OH OG (8			

www.enthalpy.com/socal Sample Acceptance Checklist – Rev 4, 8/8/2017

931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Client: LARWACB	Date Received: ५/३/१४
Temperature: ്C	Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes No	
COC received with samples? COC signed and dated? Analyses requested on COC? Correct sample containers used? Container labels match COC? Adequate sample volumes received? Yes X Sample containers received intact? Yes X	No
Number of Samples Received:	
Samples checked by:	Date: 4/3/18

		CHAI	N-OF-	CUST	ODY						1	oage		9	1 of	2
									REQ	UEST	ED A	NAL	YSES			
Address	924 Anac	apa St. Suite	e 4A				111									
			3101			1 1										
						1								1 1	1	
			<u>m</u>			- 1								1 1	- 4	1 /
	Address 924 Anacapa St. Suite 4A Santa Barbara, CA 93101 Itact Name Jared Ervin Il Address Iervin@geosyntec.com Phone 805-979-9129 Inc/Number VCEHD OWTS Study D. Number Implied By Rebecca Lustig Incription I													1 1		
P.O. Number											1 1			1 1		
Sampled By	Rebecca	ustig				1										
CH	Sample	Sample	Sample	Co	ontainer	ijo										
Client Sample ID / Description	Date	Time	Matrix	Quantity	Туре	-										
1 SW-04-D 180402	4/2/18	918	FW	1		x										
26W-E-02_180400	4/2/18	1035	1	1		X										
3 GW-E-03_180402				1	0	×										
45W-05-D_180402		1155				X									1.1	
5 5W-04-U_180402		1330				X										
65W-03-D_180402		1425		1		X										
7	2											-				
8																
9																
10																
Type of Ice used:	(Wet)	Blue	None		0: .				RELI	NQUISHE	DBY		DAT	T.		
Sample Preservative:	Yes	No	THOOSE	PHATE	Signature:	74		1	_		_					
TURNAROUND TIME NEEDED:	0		7 . 7 4 0 3 0 .	11012	1	M	WI	28					14	/2/	18	
COMMENTS:					Print:											
					Ke	BECC	201	2	057	5			TIMI		7.50	
					Company:									16	01	7
					YCE	77+1	2							14		
					Cianatura	1 -		4		CEIVED			DAT	Ε.		
					Signature: <	SHIP	ED	B	Y F	ED	EX		DAI	L.		
					1	De 1								. 1	1	
					Print:	WX 1	M					_	-	4/3	3/	18
					r tints		- 4						TIM		•	
1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a					Company: _									14:	00	
Project ID#						IIR	WES							1.11		

		CHAIN	N-OF-	CUS	TODY						4	page)	2	of	2
Client Name									RE	QUE	STE	ANA	LYSE	S		
Address	924 Anac	apa St. Suite	e 4A				e e									
	Santa Ba	rbara, CA 93	3101			6	itrog			1 1			1 1		- 1	
Project Contact Name						300	tal			1 1				1/ /		
Email Address			n			- A	& To									
Project Name/Number	805-979-9 VCEHD ((E)	(1.09									
P.O. Number	VOLING C	ow to olday				1 🛔	A 36			1 1				1 1		
Sampled By	Rebecca	Lustig				~	a (EF									
Client Sample ID / Description	Sample	Sample Time	Sample Matrix	Quantity	Container y Type	Nitrate & Nitrite (EPA 300.0)	Ammonia (EPA 350.1) & Total Nitrogen									
1 SW-04-D-180402	4/2/18	918	FW	1	1L	×	Х									
2BW-E-02_180402	1	1035		1	1	X	χ									
3 GW-E-03 180402		1100				X	X	-								
4 SW-05-D_180402		1155				X	X									
5 SW-04-4-180402		1330	3.7			X	X									
6 SW-03-D_180402		1425				x	X									
7	- 1		1													
8	1										-01					
9																
10				-												
Type of Ice used:	(Wet)	Blue	None		Signature:	_			R	ELINQU	ISHED E	BY	In	ATE:		
Sample Preservative:	Yes	(No)		Postation and a second	Signature:	1	0)	,				١	. 1	1	
TURNAROUND TIME NEEDED:						16	X	127	5				1	4/2	/18	3
COMMENTS:					Print:	Z	100	101	-			_			110	
					K	EB3	ECC	A		DU.	5/79	3	Ţ	IME:		
					Company:	1 =	111							160	0	
					VC	FI	4	>		DECE	VED BY	-		700	_	
					Signature:	SH	400	m	BY		EDE	X	C	ATE:		
						1/	1	. An	0	,		-/-				6
						M	1/x	Th	1					WI	3/	18
					Print:				1				Ī	IME:	Ė	
12 (12)120					Company:	-	DI	-						14.	On	
Project ID#						77	Ru	(A)							. 0	

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Client: LARWQCB		Date Receive	ed: 4/4/	18
Temperature: _5_ °C		Wet Ice	Blue Ice Dry	Ice N/A
Custody seals present and intact? Yes	No C	Not Applicable		
COC received with samples?	Yes X No	Notes:		**
COC signed and dated?	Yes X No			
Analyses requested on COC?	Yes X No			
Correct sample containers used?	Yes X No	\Box		
Container labels match COC?	Yes X No			
Adequate sample volumes received?	Yes X No	Πl		
Sample containers received intact?	Yes No			
Number of Samples Received:				
Samulas abaskad bu	lwy	Det	4/4/1	8
Samples checked by:	lny	Date	: 4/4/1	8

		CHAIN	N-OF-	CUS	TODY						pa	age		1	of	2
Client Name									REQU	EST	ED AN	VALYS	SES			
		apa St. Suite	e 4A													
	Santa Bar	bara, CA 9	3101							1 1						
Project Contact Name						1							1 1			
Email Address			<u>m</u>									- 1				
	805-979-9															
Project Name/Number		WTS Study				4										
P.O. Number Sampled By		uetia				1										
Sampled by						_				1 1						
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	Container y Type	E COI										
1 GW-A-03_180403	4/3/18	903	FW	1		x						1 5				
2 GW-A-02_180403	4/3/18	931		1		X	1 -1	1	-	1_						
3 GW-A-04_180403	4/3/18	959		i		X							-			
4GW-A-01_180403	4/3/18	1030	10	1	1	X										
5 GW-F-03_180403	4/3/18	1117		1		X	U I I								4	
65W-01-D_180403	4/3/18	1231		1		×						4				
7 GW-C-07_180403	4/3/18	1319	1 = 2 1 = 1	1		×	Har					1				
8GW-C-08-180403	4/3/18	1337		1		×										
9																
10																
Type of Ice used:	(Wet)	Blue	None		Signature: /				RELING	QUISHE	DBY		DATE		4	
Sample Preservative:	(Yes)	No	THEOSIZ	AMIE	Joignature.) ,							יא	11-	1	6
TURNAROUND TIME NEEDED:					K	hone	25	0	ui	10			1 4	13	119	5
COMMENTS:					Print:	A Second	1			1						
					KEB	ECCA	1	USI	79		-		TIME		3.	
					Company:	14	- i							15	21)
					\	10	三十						1)		
					Signature: <	11.000	= 1	0 : /		EIVED E			DATE	-	_	
					Jorginature. 5	TIPIL	D	BY	FE	DE	X		J			
					*			,					1	111	. 1	4
					Print:	11	,	1	,				1 6	116	1/1	0
					1.0	111	NI	Mr	1				TIME	:		
20.000					Company:	000	or t	1								
Project ID#								,								

ENVIRONMENTES			125	0 Bellflow	er Blvd., Lon	ig Bea	ich, C	A, 9084	0, 562	-985-2	169, w	/ww.i	irmes	s.org		(RI	1
		CHAI	N-OF-	CUST	ODY							p	age		2	A of	2
Client Name	Geosyntee	C							R	EQU	STE	DA	NAL	YSES			
Address	924 Anaca	apa St. Suite	e 4A			1	5										
	Santa Bar	bara, CA 9	3101			6	itroge										
Project Contact Name	-					300	tal N										
Email Address			n			- A	& To					- 1					
Project Name/Number	805-979-9					E E	(1.0		4								
P.O. Number	VOLTIDO	W To Otday				T Ĕ	A 35									1 1	
Sampled By	Rebecca l	ustig				Z ⊗	a (EF										
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Co Quantity	ontainer Type	Nitrate & Nitrite (EPA 300.0)	Ammonia (EPA 350.1) & Total Nitrogen										
1 GW-A-03_180403	4/3/18	903	FW	i	11.	х	х										4 15
2GW-A-02_180403	i	931		1	1	X	X	2 4									
3GW-A-04_180403		959		A		X	×	H						-			
4 GN-A-01_180403		1030		1		×	×										
5 GW-F-02-180403		1117		A		X	X										
6 3W-01-D-180403		1231		1		X	7										
7 GW-C-07-180403		1319		1		×	7									0,00	
8 GW-C-08-180403		1337		1		7	7										
9																	
10	100																
Type of Ice used:	(Wet)	Blue	None		Signature:				F	RELINQ	JISHED	BY		DA	TE: 1	,	
Sample Preservative:	Yes	(No)			· W	1			_	1	1	_	/	_	11	-1,	0
TURNAROUND TIME NEEDED:					Po	00	DI PA	00	1	11	ita	1			41	311	8
COMMENTS:					Print:			-	1	-	X				,	-1.	
				- 1	KE	Bt	00	Q.A	1	3770	(1		TII	NE:		
				- 1	Company:	, -	711	1			~				/	> ~	00
					V	CE	111			2505					1		_
				- 1	Signature:	011	20	bo	0	RECE	IVED B			DA	TE:		
						SHIR	70-0	ED	2	7 1	EL	DE	X	1			4
						,		,							1.1	14	18
					Print:	1	11.	. 1	1						M	-1	110
					^	1	10	1	1						ME:		
Project ID#				- 1	Company:				/.								

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Client: LARWQCB	Date Received: 4/5/18
Temperature: °C	Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes No	Not Applicable
COC received with samples? Yes COC signed and dated? Analyses requested on COC? Correct sample containers used? Yes Container labels match COC? Yes Yes	No
Adequate sample volumes received? Sample containers received intact? Yes Yes Number of Samples Received:	No No
Samples checked by: May	Date: 4/5/18

		CHAIN	N-OF-	CUST	ODY								page	Э		1	of	2
Client Name						100				REC	QUE	STED	ANA	LYS	ES			
			€ 4A				5							1.		4-7		
1 200 14	Santa Bar	bara, CA 93	3101			6	Ammonia (EPA 350.1) & Total Nitrogen							1	4			
	Client Name Address 924 Anacapa St. Suite 4A Santa Barbara, CA 93101 Project Contact Name Email Address jervin@geosyntec.com Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Int Sample ID / Description B-03 KOGOT Holls 90 2 From the sample of					Nitrate & Nitrite (EPA 300.0)	tal											
	Address 924 Anacapa St. Suite 4A Santa Barbara, CA 93101 Project Contact Name Jared Ervin Email Address jervin@geosyntec.com Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig ent Sample ID / Description Sample Date Time Matrix D-B-03_ISO404 IJB 90 2 FW U-C-BK-04_ISO404 IDS5 I-O3-U_ISO404 IDS5 I-O3-U_ISO404 IJS56 I-O3-U_ISO404 IJS56 I-O3-U_ISO404 IJS56 I-O3-U_ISO404 IJS56 IVO2-D_ISO404 IJS57						% To		- 1		- 1							
							0.1)											
	VCEHD C	W 15 Study				- <u>#</u>	A 35											
	Rebecca	Lustig				Z «ŏ	(EP											
			Sample	Co	ontainer	ate	nonia	1			- 1		7					
Client Sample ID / Description			Matrix	Quantity	Туре	i i	Amn						_				-	_
1 QW-8-03_180404	4/4/18	902	FW	j	1L	Х	X											
2 GW-C-BK-OK_180404		1030			1	X	×									-	-	
		1055		1		4	X											
	Ш	1211		(X	X						7					
		1256		1		X	X								7			
6 SN-02-D_18D404	1			1	Ý	X	4				-			1				
7		2								-				-				=
8						-		- 4			-		-	+				-
9						-						-	-	+				-
10						1				PE	UNIOU	ISHED E						
Type of Ice used:	(Wet)	-	None		Signature:	_				KE	LINGO	ISHEUL	1		DAT	E:	1	
Sample Preservative:	Yes	(No)			1				0	,						11		()
a management of the second of					Beko	ee	1	1	Tu	otz	2	_			14	-14	11	8
COMMENTS:					Print:	-0.53	00	1	<	1	2-	Da			TIME		1	
					Company:	BI	CC	1			0	70		_			2	1
					Company.	1/1	1 E	74	1						1	5	d	0
								-/1			RECEI	VED BY						
					Signature:	11	/	/	1	-					DAT	E:		T
						111	N.	4	N	1						4/	5	18
					Print:	VVV	V			1					TIMI	E:	_	
12.00.24					Company:											15	10	O
Project ID#	1		-															

CAVIRONME	-	HAIN	LOF-	CUST	ODY							page		3) of	2
			. 01						RE	QUE	STED	DEX D	S			
Address	924 Anaca	pa St. Suite	4A													
Project Contact Name	Jared Ervir	n				-				- 1						
Email Address	jervin@geo	osyntec.con	<u>n</u>			1										1.0
	Type of Ice used: Wel Blue None Sample ID / Description Date Time Matrix B-03_ 180404 4418 1030 FW (-6K-06_K0404 4418 1030 D-07_180404 4418 1035 D-07_180404 4418 1211 D-07_180404 4418 1211 D-07_180404 4418 1256 D-07_180404 4418 D-07_180404 D-07											1				
	VOLITIE O	vv i o o tady			1							1 1				
	Rebecca L			4												
Client Sample ID / Description		A 40 C A	Sample Matrix	Quantity	ontainer Type	E. coli										
		-		1		х						-				
191.		772000000000000000000000000000000000000		1		X				1						
3 GW-D-D7 180404	4/4/18					X										
4 SW-03-U_180404	4/4/18	1211		1		X										
				1		X										
6 SW-02-1-180404	4/4/18	1327	V	1		X								+		-
7											-	-		-		
8			1						-			4/4		+	-	
9							_		-			-			-	
10		1				(-1)				FLINO	IICHED	BV				
Type of Ice used:	(Wet)	Blue	None		Signature:					ELINQ	JISHED	01	_ [DATE:		
Sample Preservative:	Yes	No			n	1			W	-	1			4		10
TURNAROUND TIME NEEDED:					Bei	bee	@a	- (MI	sst	2	_		7/	41	18
COMMENTS:					Print:	too	4	Ĭ	-17	51	0)	-	TIME:		
	Santa Barbara, CA 93101 Project Contact Name Jared Ervin Email Address jervin@geosyntec.com Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Sample ID / Description Sample Sample Date Time M M O3_ 180404 4418 1030 -07_ 180404 4418 1035 3-U_180404 4418 1211 -07_ 180404 4418 1211 -07_ 180404 4418 1256 Q-D_180404 4418 1256 Q-D_180404 4418 1256 RNAROUND TIME NEEDED:					- Cu	-//			-1				12	~	00
					Ve	E	HI	>						1-	0	20
					Cimatus				1		IVED BY			DATE:		
					Signature:	SHY	PE	0 5	34	-	epe	EX			1	1
						//	Ux	1	In	1				W	15	18
					Print:	U	11			/				TIME:	5	
Decinat ID4					Company:									15	5.0	20
Projection														-		

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Client: LARWOCB	Date Received: 以 / 6 / 18
Temperature:°C	Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes N	No Not Applicable
COC received with samples? Yes	Notes:
COC signed and dated? Yes	X No
Analyses requested on COC? Yes	X No
Correct sample containers used? Yes	X No
Container labels match COC? Yes	× No
Adequate sample volumes received? Yes	X No
Sample containers received intact? Yes	X No
Number of Samples Received:	
Samples checked by:	7 Date: 4/6/18

		CHAIN	N-OF-	CUS.	TODY							р	age			1 of	2		
Client Name									F	EQU	EST	ED A	NALY	SES					
		apa St. Suite	4A				u			T									
	Santa Bar	bara, CA 9	3101			6	troge												
Project Contact Name						300.0)	IE.										1 1		
Email Address			n			₹ 6	tot &												
	805-979-9					Ü	3(1)							1 1					
Project Name/Number P.O. Number		W 15 Study				trite	350										1 1		
Sampled By	-	ustia				Ž	(EP/												
			0 1			te	onia						-						
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ontainer Type	Nitrate & Nitrite (EPA	Ammonia (EPA 350.1) & Total Nitrogen												
15W-02-11-180405	4/5/18	938	FW		1L	х	х												
2 GW-15-05-180405	45/16	1102	-	1		X	1		-										
3 GW-D-05_180405. DUP	4/5/18	1102		1		X	×						-						
4 GW-G-02_180405	4/5/18	1245		1		X	×												
5 GN-B-04_18040S	4/5/18	1404	N	1		Y	X												
6GN-B-04_18=405_EG	4/5/18	149	V	1		x	x												
7									-1				- -						
8															- 4				
9													_						
10													-3						
Type of Ice used:	(Wet)	Blue	None						_	RELING	UISHE	DBY							
Sample Preservative:	Yes	(No)	110110		Signature:	1.	1	. /						DAT	E:	1			
TURNAROUND TIME NEEDED:	163				MA	1	V	110	1	_				2 1	1	1.	-		
COMMENTS:					191	17	THE .	10	1					_ 4	15	11	7		
SOMMETTIO.					Print:	at	cas	1	Lu	5776	3			TIME	1	1 1			
					Company:	100		4		0110	2			14	0	11 0			
					1/	PI	74	\triangle							3	1			
							-//			RECE	EIVED	3Y		1 4		-			
					Signature: <	HIF	PED) B	1 A	50 E	×			DAT	E:				
						11	1	10	1					11.7		, ,			
					D	W	X	VV	4					_	MI	41	18		
					Print:				1					TIME	:				
Project ID#					Company:									1	Hi	00			
FTOJECTID#														_		15/18 15/18 16/18			

		CHAI	N-OF-	CUS	TODY							page			Dof	2
Client Name	Geosynte	С							RE	QUES	TED	ANA	LYSE	S		
Address	924 Anaca	apa St. Suite	4A													
		bara, CA 9	3101			1 1										
Project Contact Name						1 1										
Email Address	-		<u>n</u>			- 1										
Project Name/Number	805-979-9		_			1 1										
P.O. Number	VOLITO	W 10 Olday				1										
Sampled By	Rebecca	Lustig				1										
Client Sample ID / Description	Sample Date	Sample	Sample Matrix	Quantity	ontainer Type	E. coli										
18W-02-4-180405	4/5/19		FW	1	.,,,,,	×										
2 GW-D-05_180405	1127.0	1102		1		X								- Uju		
3 GW-D-05_180405_DUP		1102		1		×										
4 GW-G 07_180405		1245		1		×										
5GW-B-04_180405		1406		-		×										
62W-B-C4_180405_EQ	1	1406	V	¥		X										
7									_							
8						Ш										31
9												4			4	
10							- 11									
Type of Ice used:	(Wet)	Blue	None		Signature:	1			RE	LINQUIS	HED BY		I	DATE:	Α.	1
Sample Preservative:	(Yes)	No			olgilature.	11	Y	1	1					1.	1	
TURNAROUND TIME NEEDED:	0				4	76	H	SOL.	Le la la la la la la la la la la la la la					4	15/	10
COMMENTS:					Print: n-	1-0	2.0	1	-73				-	TIME:	11	10
					Company:	bell	M	10:	170)			_	TIVIE.	1-1	1-
					V	CA	TH	>					- 1		()	15
							-/ -/ -			RECEIV	ED BY				-	
					Signature: 5	HIP	PED	BY,	FE	DE	X		ľ	DATE:		
						U	la	n	ng					W	161	18
					Print:				/					TIME:		
Project ID#					Company:									l	4:0	0

INSTITUTE FOR INTEGRATED RESEARCH IN MATERIALS, ENVIRONMENTS & SOCIETY

June 17, 2018

Los Angeles Regional Water Quality Control Board 320 W. 4th Street Los Angeles, CA 90013

Re: IIRMES Rtqlget ID: "343/3: /25"O c{ '423: "Uco r rgu

Los Angeles Regional Water Quality C Project ID: VCEHD OWTS Study

ATTN: Shana Rapoport

IIRMES is pleased to provide you with the enclosed analytical data report for your VCEHD OWTS Study project. According to the chain-of-custody, 27 samples were received intact at IIRMES the week of 5/14/2018. Per your instructions, the samples were analyzed for:

Please don't hesitate to contact your project manger if you have any questions and thank you very much for using our laboratory for your analtytical needs.

Regards,

Alexander Long

Reviewed and Approved

Project Sample List

Los Angeles Regional Water Quality Control Board IIRMES Project ID: 121-18-03 May 2018 Samples

Project Officer: Shana Rapoport
Project Description: VCEHD OWTS Study

Sample ID#	Client Sample ID	Sample Description	Date Sampled	Matrix
16784	GW-C-BK-05_180514_EB		14-May-18	Freshwater
16785	GW-C-BK-05_180514		14-May-18	Freshwater
16786	GW-E-02_180514		14-May-18	Freshwater
16787	SW-05-D_180514		14-May-18	Freshwater
16788	SW-04-U_180514		14-May-18	Freshwater
16789	SW-04-D_180514		14-May-18	Freshwater
16790	SW-03-D_180514		14-May-18	Freshwater
16791	GW-A-03_180515		15-May-18	Freshwater
16792	GW-A-02_180515		15-May-18	Freshwater
16793	GW-A-04_180515		15-May-18	Freshwater
16794	GW-A-01_180515		15-May-18	Freshwater
16795	GW-F-02_180515		15-May-18	Freshwater
16796	GW-C-07_180515		15-May-18	Freshwater
16797	GW-C-08_180515		15-May-18	Freshwater
16798	GW-B-03_180516		16-May-18	Freshwater
16799	GW-B-03_180516_DUP		16-May-18	Freshwater
16800	SW-01-D_180516		16-May-18	Freshwater
16801	GW-B-04_180516		16-May-18	Freshwater
16802	SW-03-U_180516		16-May-18	Freshwater
16803	SW-02-U_180516		16-May-18	Freshwater
16804	GW-A-07_180516		16-May-18	Freshwater
16805	GW-C-BK-06_180517		17-May-18	Freshwater
16806	GW-D-07_180517		17-May-18	Freshwater
16807	GW-G-01_180517		17-May-18	Freshwater

Project Sample List

Los Angeles Regional Water Quality Control Board IIRMES Project ID: 121-18-03 May 2018 Samples

Project Officer: Shana Rapoport
Project Description: VCEHD OWTS Study

16808	GW-D-04_180517	17-May-18	Freshwater
16809	GW-D-05_180517	17-May-18	Freshwater
16810	GW-E-03_180517	17-May-18	Freshwater

Quality Assurance Summary

Laboratory Batch: The IIRMES Quality Manual (QM) defines a laboratory batch as a group of 20 or fewer samples of similar matrix that are processed together under the same conditions using the same reagents. QC samples are associated with each batch and are used to assess the validity of the sample analyses.

Procedural Blank: Potential laboratory contamination during sample processing and analysis is monitored through the analysis of procedural blanks at a minimum frequency of 1 per batch. The IIRMES QM requires that all measurable procedural blank constituents be less than 10x the MDL and that any detectable constituents be flagged in the project sample results with a *B* qualifier.

Accuracy: Accuracy of the project data is indicated by the analysis of a combination of blank spikes (BS), matrix spikes (MS), laboratory control spikes (LCS), certified reference materials (CRM), and/or surrogate spikes at a minimum frequency of 1 per batch. The IIRMES QM requires that 95% of the compounds greater than 10x the MDL be within the specified acceptance limits.

Precision: Precision of the project data is determined by the analysis of duplicate matrix spikes, blank spikes, and/or duplicate test sample analysis on a minimum frequency of 1 per batch. The IIRMES QM requires that for 95% of the compounds greater than 10x the MDL, the relative percent difference (RPD) be within the specified acceptance range.

Holding Time: The IIRMES QM requires that all samples be processed and analyzed within the method specific recommended holding times. Those sample analyses falling outside that specified holding time will be flagged in the sample results with a *H*.

Total/Dissolved Fraction: In some instances the results for the dissolved fraction may be higher than the total fraction for a particular analyte. This is typically caused by the corresponding analytical variation for each result and indicates the target analyte is primarily in the dissolved phase of the sample.

IIRMES Qualifier Codes

<u>Code</u>	<u>Definition</u>
ND	Analyte not detected at or above the listed MDL
В	Analyte was detected in the associated procedural blank
Н	Sample was received and/or analyzed past the recommended holding time
J	Analyte was detected at a concentration above the MDL but below the RL, therefore the reported value is estimated
N	Insufficient sample, analysis could not be performed
M	Analyte was outside the specified recovery and/or RPD acceptance limits due to matrix interference. The associated blank spikes were within limits, therefore the sample data was reported without further clarification
Q1	Analyte concentration in the sample exceeded the spike concentration, therefore the MS recovery and/or RPD limits do not apply
Q2	Analyte results for R1 and/or R2 were lower than 10x the MDL, therefore the RPD limits do not apply
NH	Sample was heterogeneous and sample homogeneity could not be readily achieved using routine laboratory procedures, therefore the corresponding RPD was outside the specified acceptance limits.

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03e

P.O. #: C1023-180514-01

Lab Request: 402649
Report Date: 05/23/2018
Date Received: 05/15/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
402649-001	GW-C-BK-05_180514
402649-002	GW-C-BK-
	05_180514_EB
402649-003	GW-E-02_180514
402649-004	SW-05-D_180514
402649-005	SW-04-U-180514
402649-006	SW-04-D-180514
402649-007	SW-03-D-180514

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Client: IIRMES Matrix: Water Collector: Client Sampled: 05/14/2018 08:53 Site: Sample #: 402649-001 Client Sample #: GW-C-BK-05_180514 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 0.60 0.5 05/22/18 SLL 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191141 Nitrate, as Nitrogen 0.60 05/15/18 05/15/18 22:24 1 0.1 mg/L JP Nitrite, as Nitrogen ND 1 0.1 05/15/18 05/15/18 22:24 mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191365 05/22/18 Ammonia, as Nitrogen 1 0.1 05/21/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen 1 0.4 05/19/18 05/21/18 ΤP mg/L Method: SM 9221-F QCBatchID: Prep Method: Method QC1191154 MPN/100ml 05/15/18 16:30 05/18/18 17:45 SK Coliform, E. Coli <2 1 T3 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/14/2018 08:53 Site: Sample #: 402649-002 Client Sample #: GW-C-BK-05_180514_EB Sample Type: **Analyte** Result **DF** RDL **Units Prepared Analyzed By Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 05/22/18 ND 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191141 Nitrate, as Nitrogen ND 0.1 mg/L 05/15/18 05/15/18 22:41 1 ND Nitrite, as Nitrogen 0.1 05/15/18 05/15/18 22:41 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191365 05/22/18 ΤP Ammonia, as Nitrogen 05/21/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen 1 0.4 mg/L 05/19/18 05/21/18 ΤP Method: SM 9221-F Prep Method: Method QCBatchID: QC1191154 Coliform, E. Coli 1 MPN/100ml 05/15/18 16:30 05/17/18 16:55 CO Matrix: Water Client: IIRMES Collector: Client Sampled: 05/14/2018 10:16 Site: Sample #: 402649-003 Client Sample #: GW-E-02_180514 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen ND 05/22/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1191141 Prep Method: Method Nitrate, as Nitrogen ND 0.1 05/15/18 05/15/18 23:30 1 mg/L Nitrite, as Nitrogen ND 1 0.1 mg/L 05/15/18 05/15/18 23:30 Method: EPA 350.1 QCBatchID: QC1191365 Prep Method: Method Ammonia, as Nitrogen 1 0.1 ma/L 05/21/18 05/22/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen ND 0.4 05/19/18 05/21/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1191154

T3

MPN/100ml 05/15/18 16:30 05/17/18 16:55 CO

Coliform, E. Coli

1

Client: IIRMES Matrix: Water Collector: Client Sampled: 05/14/2018 10:38 Site: Sample #: 402649-004 Client Sample #: SW-05-D_180514 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 0.5 05/22/18 SLL 1.24 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191141 1.24 Nitrate, as Nitrogen 05/15/18 05/15/18 23:47 1 0.1 mg/L JP Nitrite, as Nitrogen ND 1 0.1 05/15/18 05/15/18 23:47 JP mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191365 05/22/18 Ammonia, as Nitrogen 1 0.1 05/21/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen 1 0.4 05/19/18 05/21/18 ΤP mg/L Method: SM 9221-F QCBatchID: Prep Method: Method QC1191154 Coliform, E. Coli MPN/100ml 05/15/18 16:30 05/18/18 17:45 SK 900 1 T3 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/14/2018 12:02 Site: Sample #: 402649-005 Client Sample #: SW-04-U-180514 Sample Type: **Analyte** Result **DF RDL Units Prepared Analyzed By Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 05/22/18 3.94 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191141 Nitrate, as Nitrogen 3.94 0.1 mg/L 05/15/18 05/16/18 00:04 1 05/16/18 00:04 Nitrite, as Nitrogen ND 0.1 05/15/18 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191365 05/22/18 ΤP Ammonia, as Nitrogen 05/21/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen 1 0.4 mg/L 05/19/18 05/21/18 ΤP Method: SM 9221-F Prep Method: Method QCBatchID: QC1191154 Coliform, E. Coli 1 MPN/100ml 05/15/18 16:30 05/18/18 17:45 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/14/2018 12:50 Site: Sample #: 402649-006 Client Sample #: SW-04-D-180514 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen ND 05/22/18 SH 1 0.5 mg/L Method: EPA 300.0 QCBatchID: QC1191141 Prep Method: Method Nitrate, as Nitrogen ND 1 0.1 05/15/18 05/16/18 00:20 mg/L Nitrite, as Nitrogen ND 1 0.1 mg/L 05/15/18 05/16/18 00:20 Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 Ammonia, as Nitrogen 1 0.1 ma/L 05/21/18 05/22/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191311 Total Kjeldahl Nitrogen ND 0.4 05/19/18 05/21/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1191154 Coliform, E. Coli 50 MPN/100ml 05/15/18 16:30 05/18/18 17:45 SK Т3 1

Matrix: Water Client: IIRMES Collector: Client

Sample #: 402649-007 Client Sample #: SW-03-D-180514 Sample Type:

Analyte		Result	DF	RDL	. Units	Prepared	Analyzed	By N	otes
Method: ALCH 4025	Prep Method:	None					QCBatchII	D:	
Total Nitrogen		1.05	1	0.5	mg/L		05/22/18	SLL	
Method: EPA 300.0	Prep Method:	Method					QCBatchII	D: QC11	91141
Nitrate, as Nitrogen		1.05	1	0.1	mg/L	05/15/18	05/16/18 00:37	JP	
Nitrite, as Nitrogen		ND	1	0.1	mg/L	05/15/18	05/16/18 00:37	JP	
Method: EPA 350.1	Prep Method:	Method					QCBatchII	D: QC11	91365
Ammonia, as Nitrogen		ND	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method:	Method					QCBatchII	D: QC11	91311
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method:	Method					QCBatchII	D: QC11	91154
Coliform, E. Coli		110	1		MPN/100ml	05/15/18 16:30	05/18/18 17:45	SK	T3

QCBatchID: QC1191141	Analyst: JParedes	Method: EPA 300.0	
Matrix: Water	Analyzed: 05/15/2018	Instrument: AAICP (group)	

	Blank Summary											
	Blank											
Analyte	Result	Units	RDL	Notes								
QC1191141MB1	•											
Bromide	ND	mg/L	0.3									
Chloride	ND	mg/L	1									
Nitrate + Nitrite, as Nitrogen	ND	mg/L	0.44									
Nitrate, as Nitrogen	ND	mg/L	0.1									
Nitrite, as Nitrogen	ND	mg/L	0.1									
Sulfate	ND	mg/L	0.5									

Lab Control Spike/Lab Control Spike Duplicate Summary											
	Spike Amount	Spike Result		Recoveries		Limits					
Analyte	LCS LCSD	LCS LCS	D Units	LCS LCSD	RPD	%Rec	RPD	Notes			
QC1191141LCS1	·	•	•		•		·				
Bromide	15	14.4	mg/L	96		90-110					
Chloride	100	98.5	mg/L	99		90-110					
Nitrate, as Nitrogen	9.03	8.87	mg/L	98		90-110					
Nitrite, as Nitrogen	9.15	8.62	mg/L	94		90-110					
Sulfate	50	50.1	mg/L	100		90-110					

Matrix Spike/Matrix Spike Duplicate Summary												
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191141MS1, QC1191141MSD1				•			•		•	Sc	ource:	402632-001
Bromide	0.282	15	15	13.7	13.7	mg/L	89	89	0.0	80-120	20	
Chloride	69.3	100	100	164	164	mg/L	95	95	0.0	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	9.19	9.23	mg/L	102	102	0.4	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.01	7.96	mg/L	88	87	0.6	80-120	20	
Sulfate	12.3	50	50	61.5	61.6	mg/L	98	99	0.2	80-120	20	

QCBatchID: QC1191311 Analy	st: trinh		Method	: EPA 351.2									
Matrix: Water Analyze	ed: 05/21	/2018	Instrumen	: CHEM (group)								
		ВІ	lank Summ	ary									
		Blank											
Analyte		Result	Units		RDI	L	No	tes					
QC1191311MB1	•		•	•									
Total Kjeldahl Nitrogen		ND	mg/L		0.4	ļ							
Lab Control Spike/ Lab Control Spike Duplicate Summary													
	Spike	Amount	Spike Resu	t	Recov	eries		Lim	its				
Analyte	LCS	LCSD	LCS LC	SD Units	LCS	LCSD	RPD	%Rec	RPD	Notes			
QC1191311LCS1													
Total Kjeldahl Nitrogen	2.5		2.6	mg/L	104			80-120					
N	latrix Sp	oike/Mati	rix Spike D	ıplicate Sum	nmary								
Samp	e Spike	Amount	Spike Resu	t	Recov	veries		Limit	ts				
Analyte Amou	nt MS	MSD	MS MS	D Units	MS	MSD	RPD	%Rec	RPD	Notes			
QC1191311MS1, QC1191311MSD1					•			Sc	ource:	402679-001			
Total Kjeldahl Nitrogen 0.108	12.5	12.5	12 1:	mg/L	95	95	0.0	80-120	20				

QCBatchID: QC1191365 An	alyst:	triph		Mot	hod:	EPA 350.1						
	•											
Matrix: Water Anal	yzed:	05/22/2	2018	Instrum	ent:	CHEM (group)						
			BI	ank Sum	mar	у						
			Blank									
Analyte			Result	Uni	ts		RE	DL	No	tes		
QC1191365MB1						1		-				
Ammonia, as Nitrogen			ND	mg/	/L		0.	1				
			,				_					
Lab (Sontr	oi Spi	ike/ Lab	Control	Spil	ke Duplicate	Sun	nmary				
		Spike	Amount	Spike R	esult		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSE	O Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191365LCS1												
Ammonia, as Nitrogen		5		4.82		mg/L	96			80-120		
	Mati	riv Sn	iko/Mati	riv Sniko	Dur	olicate Sum	marv					
						nicale Sum						
Sai	mple	Spike	Amount	Spike R	esult		Reco	overies		Limit	S	
Analyte Am	ount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191365MS1, QC1191365MSD1										Sc	urce:	402756-003

QCBatchID: QC1191380 A	nalyst:	trinh		Me	thod:	EPA 350.1						
Matrix: Water Ana	alyzed:	05/22/2	2018	Instru	ment:	CHEM (group)						
			Bla	ank Sui	nmar	у						
			Blank									
Analyte			Result	Ur	nits		RE	DL	No	tes		
QC1191380MB1	,			'		1		1				
Ammonia, as Nitrogen			ND	m	g/L		0.	1				
Lab	Contr	ol Spi	ke/ Lab	Contro	l Spil	ke Duplicate	e Sun	nmary				
		Spike A	Amount	Spike F	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSE	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191380LCS1												
Ammonia, as Nitrogen		5		4.84		mg/L	97			80-120		
	Matr	rix Spi	ike/Matr	ix Spik	e Dup	licate Sum	mary					
Sa	ample	Spike A	Amount	Spike I	Result		Reco	veries		Limit	:S	
Analyte Ar	mount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191380MS1, QC1191380MSD1			'							So	urce:	402789-001
Ammonia, as Nitrogen 0	.382	5	5	4.03	4.01	mg/L	73	73	0.5	80-120	20	М

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

BQ4 Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.

BQ5 Minor Dissolved Oxygen loss was observed in the blank water check.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

D2 Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.

D3 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply.

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

Q1

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit
TIC Tentatively Identified Compounds

C-154

CHAIN-OF-CUSTODY																	e 1 of 1				
	Client Name	7.13/11/21 70	A - 2 - 2 - 2								RE	QUE	STED	ANA	LYS	ES					
	Address	1250 Bellflo							-			-									
	Project Contact Name	Long Beach	n, CA 9084	10			4							-	1911						
-	Project Contact Name Email Address		mail com				1							1							
		(310) 408-2					1						ł	1		1 4					
	Project Name/Number			المنت المنت								5		W							
	P.O. Number		514-01]	_				oge		W.							
	Sampled By	RL						onis		w	4)	불									
į.	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix			S S	Amm	x x x x x x x	Nitra	Nitrat	Nitrite	Total								
1	GW-C-BK-05_180514	5/14/2018	08:53	Freshwater	3	Various	×	×	x	x	×	x			ΝŒ.	Ĭ					
2	GW-C-BK-05_180514_EB	5/14/2018	08:53	Freshwater	3	Various	×	X	x	x	X	x			S IL						
3	GW-E-02_180514	5/14/2018	10:16	Freshwater	3	Various	×	X	x	x	X	х									
4	SW-05-D_180514	5/14/2018	10:38	Freshwater	3	Various	х	X	x	X	X	x						T Y			
5	SW-04-U-180514	5/14/2018	12:02	Freshwater	3	Various	×	x	×	x	X	×				1					
6	SW-04-D-180514	5/14/2018	12:50	Freshwater	3	Various	×	x	x	x	x	x									
7	SW-03-D-180514	5/14/2018	13:43	Freshwater	3	Various	×	x	x	x	x	x									
8														l E							
9									1, 1												
10																					
	Type of Ice used:	Wet	Blue	None		Cimpature					RE	LINQUI	SHED BY	1		DATE					
	Sample Preservative:	Yes	No				•									DATE:					
	TURNAROUND TIME NEEDED:	Standard				ZI	M	N	2							5	/15	5/1	8		
٠	COMMENTS:					Print.				, ch	41.	, .				TIME					
7	KN Preserved with Sulfurion	Acid						1	ear!	3/16	nuv							. ~			
						Company, inc										1	5:6	12			
F	Please analyze E. coli even t	though it	is past h	olding tin	ne .							RECEIV	ED BY								
						Signature:	\sim									DATE					
					REQUESTED ANALYSES In	5/15/18															
						Print:	/	-	14.	14						TIME		_			
	Project ID#	402	649	,		Company:		ب	Table 1						-			507	Ŋ.		
	Project ID#			-		Section 2			CV.	7								1.47			

SAMPLE ACCEPTANCE CHECKLIST

Section 1	V V.			
Client: IIRMES	Project: 121-18-03e			
Date Received: 5/15/18	Sampler's Name Present:	√ Yes	No	
Section 2		2.00	0. 61262	
Sample(s) received in a cooler? $\boxed{\checkmark}$ Yes, How many? $\boxed{1}$	No (skip section 2)		le Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 2.3 (Acceptance range is < 6°C but not frozen (for Microbiology samples, accept the same day as sample receipt to have a higher temperal Shipping Information:	#2: #3: ance range is < 10°C but not frozen). I	#4: t is acceptable	e for sample	
Section 3				
Was the cooler packed with: ✓ Ice ☐ Ice Packs ☐ Paper ☐ None Cooler Temp (°C): #1: 2.4 #2:	Bubble Wrap Styro	ofoam #4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1	- 0	
Are custody seals present?			1	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended f	or Microbiology samples)	1		
Did all samples arrive intact? If no, indicate in Section 4 k	pelow.	1		
Did all bottle labels agree with COC? (ID, dates and times	s)	1		
Were the samples collected in the correct containers for		1		
Are the containers labeled with the correct preserv	atives?	1		
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			1
Was a sufficient amount of sample submitted for the rec	quested tests?	1		
Section 5 Explanations/Comments Past holding time for E. coli.				
Section 6				
For discrepancies, how was the Project Manager notified	1? Verbal PM Initials: Email (email sent to)		17	-
Project Manager's response:				
Completed By:	Date: 5722-114/	T//5/10	7 3	

5/15/2

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03f

P.O. #: C1023-180516-01

Lab Request: 402696
Report Date: 05/24/2018
Date Received: 05/16/2018

Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
402696-001	GW-A-01_180515
402696-002	GW-A-02_180515
402696-003	GW-A-03_180515
402696-004	GW-A-04_180515
402696-005	GW-F-02_180515
402696-006	GW-C-07_180515
402696-007	GW-C-08 180515

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Matrix: Water	Client: IIRI	MES		C	ollector: Client			
Sampled: 05/15/2018 10:33	Site:							
Sample #: 402696-001	Client Sample #: GW	/-A-01_180515		Samp	le Type:			
Analyte	Res	ult DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID:		
Total Nitrogen	8.6	6 1	0.5	mg/L		05/22/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID:	: Q(C1191238
Nitrate, as Nitrogen	8.6	6 1	0.1	mg/L	05/16/18	05/16/18 19:28	JP	
Nitrite, as Nitrogen	NI) 1	0.1	mg/L	05/16/18	05/16/18 19:28	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:	: Q(C1191365
Ammonia, as Nitrogen	NI) 1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID:	: Q0	C1191311
Total Kjeldahl Nitrogen	NI) 1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:	: Q0	C1191227
Coliform, E. Coli	<	2 1		MPN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	T3
Matrix: Water	Client: IIRI	MEC			ollector: Client			
Sampled: 05/15/2018 09:30	Site:	VIES		C	ollector: Client			
Sample #: 402696-002	Client Sample #: GW	/-A-02 180515		Samn	le Type:			
Gampie #. <u>402030-002</u>	Oneni Gampie #. GW	74 02_100313		Oamp	по турс.			
Analyte	Res	ult DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None					QCBatchID:		
Total Nitrogen	2.7		0.5	mg/L			SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID:		C1191238
Nitrate, as Nitrogen	2.7	_	0.1	mg/L	05/16/18	05/16/18 20:18	JP	
Nitrite, as Nitrogen	NI		0.1	mg/L	05/16/18	05/16/18 20:18	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID:		C1191365
Ammonia, as Nitrogen	0.21	2 1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID:		C1191311
Total Kjeldahl Nitrogen	NI) 1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID:	: Q(C1191227
Coliform, E. Coli	<	2 1		MPN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	Т3
Matrix: Water	Client: IIRI	MES		C	ollector: Client			
Sampled: 05/15/2018 09:07	Site:	VILO			oncotor. Oncore			
Sample #: 402696-003	Client Sample #: GW	/-A-03_180515		Samp	le Type:			
		. 55					_	NI 4
Analyte Method: ALCH 4025	Res Prep Method: None	ult DF	RDL	Units	Prepared	Analyzed QCBatchID:		Notes
Total Nitrogen	5.7	3 1	0.5	mg/L			SLL	
Method: EPA 300.0								24404222
Nitrate, as Nitrogen	Prep Method: Method 5.7		0.1	mg/L	05/16/18	QCBatchID: 05/16/18 20:34	JP	C1191238
Nitrate, as Nitrogen Nitrite, as Nitrogen	5. <i>1</i> NI	_	0.1	mg/L	05/16/18		JP	
			0.1	y/L	00, 10, 10			21101265
Method: EPA 350.1 Ammonia, as Nitrogen	Prep Method: Method		0.1	mg/L	05/21/18	QCBatchID: 05/22/18	TP	C1191365
			U. I	my/L	03/21/10			24404044
Method: EPA 351.2	Prep Method: Method		0.4	m ~/I	0E/40/40	QCBatchID:		C1191311
Total Kjeldahl Nitrogen	NI		0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method			MDN1/422 :	05/40/40	QCBatchID:		
Coliform, E. Coli	<	2 1		MPN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	Т3

Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 05/15/2018 10:00	Site:							
Sample #: 402696-004	Client Sample #: GW-A-04	_180515		Samp	le Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID		
Total Nitrogen	2.37	1	0.5	mg/L		05/22/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID	: Q0	21191238
Nitrate, as Nitrogen	2.37	1	0.1	mg/L	05/16/18	05/16/18 20:51	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	05/16/18	05/16/18 20:51	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID	: Q0	21191365
Ammonia, as Nitrogen	ND	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1191311
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	21191227
Coliform, E. Coli	<2	1	N	1PN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	T3
Matrix: Water	Client: IIRMES			^	ellester. Olisid			
Sampled: 05/15/2018 11:25	Site:			C	ollector: Client			
Sample #: 402696-005	Client Sample #: GW-F-02	180515		Samn	le Type:			
	Onent dample #. OW 1-02	_100010		Oamp	пе туре.			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None					QCBatchID		
Total Nitrogen	5.15	1	0.5	mg/L		05/22/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID		21191238
Nitrate, as Nitrogen	5.15	1	0.1	mg/L	05/16/18	05/16/18 21:08	JP 	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	05/16/18	05/16/18 21:08	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID		21191365
Ammonia, as Nitrogen	ND	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1191311
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	21191227
Coliform, E. Coli	<2	1	N	1PN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	Т3
Matrix: Water	Client: IIRMES			C	ollector: Client			
Sampled: 05/15/2018 13:43	Site:			C	onector. Chefit			
Sample #: 402696-006	Client Sample #: GW-C-07	180515		Samn	le Type:			
•	· · · · · · · · · · · · · · · · · · ·	_						
Analyte	Result None	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None 1.86	1	0.5	mg/L		QCBatchID 05/22/18	: SLL	
Total Nitrogen		ı		IIIg/L				24404000
Method: EPA 300.0	Prep Method: Method	1	0.4	m a /!	05/46/49	QCBatchID		71191238
Nitrate, as Nitrogen	1.86 ND	1 1	0.1 0.1	mg/L	05/16/18 05/16/18	05/16/18 21:24 05/16/18 21:24	JP JP	
Nitrite, as Nitrogen		ı	0.1	mg/L	U3/ 10/ 16			2440465=
Method: EPA 350.1	Prep Method: Method	1	0.4	m a/I	0E/04/40	QCBatchID		71191365
Ammonia, as Nitrogen	ND	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method			,,	05/15/1-	QCBatchID		C1191311
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID		
Coliform, E. Coli	<2	1	N	1PN/100ml	05/16/18 17:05	05/19/18 19:50	IPP	Т3

Matrix: Water Client: IIRMES Collector: Client

Sampled: 05/15/2018 14:04 **Site:**

Sample #: 402696-007 Client Sample #: GW-C-08_180515 Sample Type:

Analyte		Result	DF	RDL	. Units	Prepared	Analyzed	By Notes
Method: ALCH 4025	Prep Method:	None					QCBatchID	:
Total Nitrogen		1.62	1	0.5	mg/L		05/22/18	SLL
Method: EPA 300.0	Prep Method:	Method					QCBatchID	: QC1191238
Nitrate, as Nitrogen		1.62	1	0.1	mg/L	05/16/18	05/16/18 22:14	JP
Nitrite, as Nitrogen		ND	1	0.1	mg/L	05/16/18	05/16/18 22:14	JP
Method: EPA 350.1	Prep Method:	Method					QCBatchID	: QC1191365
Ammonia, as Nitrogen		ND	1	0.1	mg/L	05/21/18	05/22/18	TP
Method: EPA 351.2	Prep Method:	Method					QCBatchID	: QC1191311
Total Kjeldahl Nitrogen		ND	1	0.4	mg/L	05/19/18	05/21/18	TP
Method: SM 9221-F	Prep Method:	Method					QCBatchID	: QC1191227
Coliform, E. Coli		<2	1		MPN/100ml	05/16/18 17:05	05/19/18 19:50	IPP T3

QCBatchID: QC1191238 Analysi	: JParedes	Method:	EPA 300.0					
Matrix: Water Analyzed	: 05/16/2018	Instrument:	AAICP (group)					
	BI	ank Summa	ry					
	Blank							
Analyte	Result	Units		RDL	No	tes		
QC1191238MB1								
Nitrate, as Nitrogen	ND	mg/L		0.1				
Nitrite, as Nitrogen	ND	mg/L		0.1				
Lab Con	trol Spike/ Lab	Control Spi	ke Duplicate	Summary	,			
	Spike Amount	Spike Result		Recoveries		Limi	its	
Analyte	LCS LCSD	LCS LCSI	O Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1191238LCS1						•		
Nitrate, as Nitrogen	9.03	8.81	mg/L	98		90-110		

	Mat	trix Sp	ike/Mat	rix Spik	re Dupli	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191238MS1, QC1191238MSD1							'			Sc	urce:	402696-001
Nitrate, as Nitrogen	8.66	9.03	9.03	16.8	16.8	mg/L	90	90	0.0	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	7.85	7.99	mg/L	86	87	1.8	80-120	20	

mg/L

94

90-110

8.59

9.15

Nitrite, as Nitrogen

200 : LID 201/2/2/											
QCBatchID: QC1191311 Analy	st: trinh		Meth	od:	EPA 351.2						
Matrix: Water Analyze	ed: 05/21	/2018	Instrume	ent:	CHEM (group)						
		В	lank Sumi	mary	<i>y</i>						
		Blank									
Analyte		Result	Units	3		RE	DL	No	tes		
QC1191311MB1							1				
Total Kjeldahl Nitrogen		ND	mg/L	-		0.	4				
Lab Co.	ntrol Sp	oike/ Lab	Control S	Spik	re Duplicate	e Sun	nmary				
	Spike	Amount	Spike Re	sult		Reco	veries		Lim	its	
Analyte	LCS	LCSD	LCS L	CSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191311LCS1											<u>'</u>
Total Kjeldahl Nitrogen	2.5		2.6		mg/L	104			80-120		
M	latrix S _l	oike/Mat	rix Spike l	Dup	licate Sum	mary					
Sampl	e Spike	Amount	Spike Re	sult		Reco	veries		Limit	ts	
Analyte Amou	nt MS	MSD	MS N	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191311MS1, QC1191311MSD1	•								Sc	ource:	402679-001
Total Kjeldahl Nitrogen 0.108	12.5	12.5	12	12	mg/L	95	95	0.0	80-120	20	

QCBatchID: QC1191365 An	alyst: t	trinh		Met	hod:	EPA 350.1						
Matrix: Water Anal	yzed: (05/22/2	018	Instrum	ent:	CHEM (group)						
			BI	ank Sum	mar	У						
			Blank									
Analyte		ļ	Result	Uni	ts		RE	DL	No	tes		
QC1191365MB1				•						,		
Ammonia, as Nitrogen			ND	mg/	L L		0.	1				
Lab (Contro	ol Spil	ke/ Lab	Control	Spil	ke Duplicate	e Sun	nmary				
	;	Spike A	Mount	Spike R	esult		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSE) Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191365LCS1	•							•				
Ammonia, as Nitrogen		5		4.82		mg/L	96			80-120		
	Matri	ix Spi	ke/Matı	rix Spike	Dup	olicate Sum	mary					
Sai	mple	Spike A	Mount	Spike R	esult		Reco	veries		Limit	ts	
Analyte Am	ount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191365MS1, QC1191365MSD1										Sc	urce:	402756-003
Ammonia, as Nitrogen	1D	5	5	5.99	5.99	mg/L	120	120	0.0	80-120	20	

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

BQ4 Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.

BQ5 Minor Dissolved Oxygen loss was observed in the blank water check.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

D2 Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.

D3 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply.

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P2 The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

Q1

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit
TIC Tentatively Identified Compounds

402696

Institute for Integrated Research in Materials, Environments, and Society

		(CHAIL	N-OF-C	CUST	ODY								page			1 of 1		
	Client Name	The second second									RE	QUE	STED	ANA	LYSE	S			
	Address	1250 Belific																	
_	Barbara and S	Long Beach	n, CA 9084	0			1												
-	Project Contact Name Email Address	Alex Long	mail com				1										1 1		П
		(310) 408-2					1												
	Project Name/Number		.000				1												
	P.O. Number		516-01				1					ger					1 1		
	Sampled By	RL						ia.				ig l				1			
	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	C Quantity	ontainer Type	E. Coli	Ammonia	TKN	Nitrate	Nitrite	Total Nitrogen							
1	GW-A-01_180515	5/15/2018	10:33	Freshwater	3	Various	x	х	×	x	X	x				1			
2	GW-A-02_180515	5/15/2018	09:30	Freshwater	3	Various	x	×	×	x	x	x							
3	GW-A-03_180515	5/15/2018	09:07	Freshwater	3	Various	x	×	x	x	x	х				1/			
4	GW-A-04_180515	5/15/2018	10:00	Freshwater	3	Various	x	x	x	x	x	х						1)	
5	GW-F-02_180515	5/15/2018	11:25	Freshwater	3	Various	x	x	x	×	x	x							
6	GW-C-07_180515	5/15/2018	13:43	Freshwater	3	Various	х	х	x	х	x	х							
7	GW-C-08_180515	5/15/2018	14:04	Freshwater	3	Various	x	х	x	x	X	x							
8																	1-1	_	
9		-3-3-1												-					
10										-						4,1			
	Type of Ice used:	Wet	Blue	None		Signature:	/		A		RE	LINQU	SHED BY		ID/	TE:		_	-
	Sample Preservative:	Yes	No					1								1000			
	TURNAROUND TIME NEEDED:	Standard				hus	~	X-	_							05/	6/18		
	COMMENTS:					Print:	-/		- 10	1.6							0110		
						Mo	UNG	1	No	24					TII	ME:			
	TKN Preserved with Sulfurio	Acid				Company: IIR	MES								1/1	3.3	6		
	Please analyze E. coli even	though it	is past h	olding tim	ne .							DECEN	ED BY						
			1,000			Signature:					_	KECEI	EUBI		DA	TE:	. 7	25.	
			3.6/-	7.1		/	1									511	6/	X	
			201				1										61	4	
						Print:	/	1	K	UN						ME.			
	D. J. J. J. D.					Company:		2	K	. , ,	_					15	34	0	
	Project ID#			3/				2	H										

SAMPLE ACCEPTANCE CHECKLIST

Section 1				
Client: IIRMES	Project: 121-18-03f			
Date Received: 05/16/18	Sampler's Name Present:	√Yes	No	
Section 2		0.757.003	24 683-	
Sample(s) received in a cooler? Yes, How many? 1	No (skip section 2)		e Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 3.6 (Acceptance range is < 6°C but not frozen (for Microbiology samples, accept the same day as sample receipt to have a higher tempera Shipping Information:	#2: #3:	#4: It is acceptable	for sample	
Section 3				
Was the cooler packed with: ✓ Ice	Bubble Wrap Styr	ofoam		
Cooler Temp (°C): #1: <u>-2.1</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		1		
Are sampling dates & times present?		1		
ls a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?			1	
If custody seals are present, were they intact?		1		1
Are all samples sealed in plastic bags? (Recommended f	or Microbiology samples)	1		T.
Did all samples arrive intact? If no, indicate in Section 4	below.	1		
Did all bottle labels agree with COC? (ID, dates and time	s)	1		
Were the samples collected in the correct containers for	the required tests?	1		<u> </u>
Are the containers labeled with the correct preserv	vatives?	1		
Is there headspace in the VOA vials greater than 5-6 mm	in diameter?			1
Was a sufficient amount of sample submitted for the rec	quested tests?	1		
Section 5 Explanations/Comments				
Section 6	n Dual is a second	600		
For discrepancies, how was the Project Manager notified	d? Verbal PM Initials: Email (email sent to	- Call of the collins of	1	-
Project Manager's response:		5/1	,	
Completed By: Miles	Date: 05/16/18			

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03g

P.O. #: C1023-180517-01

Lab Request: 402742
Report Date: 05/24/2018
Date Received: 05/17/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
402742-001	GW-B-03_180516
402742-002	GW-B-03_180516_Dup
402742-003	SW-01-D_180516
402742-004	GW-B-04_180516
402742-005	SW-03-U_180516
402742-006	SW-02-U_180516
402742-007	GW-A-07 180516

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Client: IIRMES Matrix: Water Collector: Client Sampled: 05/16/2018 08:50 Site: Sample #: 402742-001 Client Sample #: GW-B-03_180516 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 0.5 05/24/18 SLL 1.69 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191240 Nitrate, as Nitrogen 1.69 05/17/18 05/17/18 15:01 1 0.1 mg/L JP Nitrite, as Nitrogen ND 1 0.1 05/17/18 05/17/18 15:01 mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 Ammonia, as Nitrogen 1 0.1 05/21/18 05/22/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 TP Total Kjeldahl Nitrogen 1 0.4 05/19/18 05/21/18 mg/L Method: SM 9221-F QCBatchID: Prep Method: Method QC1191262 MPN/100ml 05/17/18 17:55 05/19/18 18:15 IPP Coliform, E. Coli -2 1 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/16/2018 08:50 Site: Sample #: 402742-002 Client Sample #: GW-B-03_180516_Dup Sample Type: Analyzed By **Analyte** Result **DF** RDL **Units Prepared Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 05/24/18 1.69 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191240 Nitrate, as Nitrogen 1.69 0.1 mg/L 05/17/18 05/17/18 15:18 JP 1 05/17/18 15:18 Nitrite, as Nitrogen ND 0.1 05/17/18 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 05/22/18 ΤP Ammonia, as Nitrogen 05/21/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen 1 0.4 mg/L 05/19/18 05/21/18 ΤP Method: SM 9221-F Prep Method: Method QCBatchID: QC1191262 Coliform, E. Coli 1 MPN/100ml 05/17/18 17:55 05/19/18 18:15 IPP Matrix: Water Client: IIRMES Collector: Client Sampled: 05/16/2018 10:06 Site: Sample #: 402742-003 Client Sample #: SW-01-D_180516 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen ND 05/24/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1191240 Prep Method: Method Nitrate, as Nitrogen ND 1 0.1 05/17/18 05/17/18 15:34 mg/L Nitrite, as Nitrogen ND 1 0.1 mg/L 05/17/18 05/17/18 15:34 Method: EPA 350.1 QCBatchID: QC1191380 Prep Method: Method Ammonia, as Nitrogen 1 0.1 ma/L 05/21/18 05/22/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen ND 0.4 05/19/18 05/21/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1191262 Coliform, E. Coli 23 MPN/100ml 05/17/18 17:55 05/20/18 18:19 IPP T3 1

Matrix: Water Client: IIRMES Collector: Client Sampled: 05/16/2018 11:07 Site: Sample #: 402742-004 Client Sample #: GW-B-04_180516 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 2.08 0.5 05/24/18 SLL 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191240 Nitrate, as Nitrogen 2.08 05/17/18 05/17/18 15:51 1 0.1 mg/L JP Nitrite, as Nitrogen ND 1 0.1 05/17/18 05/17/18 15:51 mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 05/22/18 Ammonia, as Nitrogen 1 0.1 05/21/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 TP Total Kjeldahl Nitrogen 1 0.4 05/19/18 05/21/18 mg/L Method: SM 9221-F QCBatchID: Prep Method: Method QC1191262 MPN/100ml 05/17/18 17:55 05/20/18 18:19 IPP Coliform, E. Coli <2 1 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/16/2018 12:06 Site: Sample #: 402742-005 Client Sample #: SW-03-U_180516 Sample Type: Analyzed By **Analyte** Result **DF** RDL **Units Prepared Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 05/24/18 1.86 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191240 Nitrate, as Nitrogen 1.86 1 0.1 mg/L 05/17/18 05/17/18 16:08 JP 05/17/18 16:08 Nitrite, as Nitrogen ND 0.1 05/17/18 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 05/22/18 ΤP Ammonia, as Nitrogen 05/21/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen 1 0.4 mg/L 05/19/18 05/21/18 ΤP Method: SM 9221-F Prep Method: Method QCBatchID: QC1191262 Coliform, E. Coli 1 MPN/100ml 05/17/18 17:55 05/20/18 18:19 IPP Matrix: Water Client: IIRMES Collector: Client Sampled: 05/16/2018 13:55 Site: Sample #: 402742-006 Client Sample #: SW-02-U_180516 Sample Type: Analyzed By **DF RDL Analyte** Result Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen ND 05/24/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1191240 Prep Method: Method Nitrate, as Nitrogen ND 1 0.1 05/17/18 05/17/18 16:24 mg/L Nitrite, as Nitrogen ND 1 0.1 mg/L 05/17/18 05/17/18 16:24 Method: EPA 350.1 QCBatchID: QC1191380 Prep Method: Method Ammonia, as Nitrogen 1 0.1 ma/L 05/21/18 05/22/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen ND 0.4 05/19/18 05/21/18 ΤP 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1191262 Coliform, E. Coli 13 MPN/100ml 05/17/18 17:55 05/20/18 18:19 IPP T3

1

Matrix: Water Client: IIRMES Collector: Client

Sample #: 402742-007 Client Sample #: GW-A-07_180516 Sample Type:

Analyte	Re	sult [)F	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					-	QCBatchl	D:	
Total Nitrogen	12	2.5	1	0.5	mg/L		05/24/18	SLL	
Method: EPA 300.0	Prep Method: Metho	d					QCBatchI	D: QC	1191240
Nitrate, as Nitrogen	12	2.5	1	0.1	mg/L	05/17/18	05/17/18 16:41	JP	
Nitrite, as Nitrogen	1	ND	1	0.1	mg/L	05/17/18	05/17/18 16:41	JP	
Method: EPA 350.1	Prep Method: Metho	d					QCBatchl	D: QC	1191380
Ammonia, as Nitrogen	0.2	78	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Metho	od					QCBatchl	D: QC	1191312
Total Kjeldahl Nitrogen	1	ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Metho	od					QCBatchl	D: QC	1191262
Coliform, E. Coli		<2	1		MPN/100ml	05/17/18 17:55	05/19/18 18:15	IPP	T3

QCBatchID: QC1191240 Analy	st: JParedes	Method:	EPA 300.0					
Matrix: Water Analyze	ed: 05/17/2018	Instrument:	AAICP (group)					
	Bla	ank Summa	ry					
	Blank							
Analyte	Result	Units		RDL	No	tes		
QC1191240MB1	·		•					
Nitrate, as Nitrogen	ND	mg/L		0.1				
Nitrite, as Nitrogen	ND	mg/L		0.1				
Lab Co	ntrol Spike/ Lab	Control Spi	ke Duplicate	Summary	,			
	Spike Amount	Spike Result		Recoveries		Lim	its	
Analyte	LCS LCSD	LCS LCSI	D Units	LCS LCSD	RPD	%Rec	RPD	Notes
QC1191240LCS1					•	•		
Nitrate, as Nitrogen	9.03	8.85	mg/L	98		90-110		

	Mat	trix Sp	ike/Mati	rix Spik	re Dupli	icate Sun	mary					_
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191240MS1, QC1191240MSD1						•	•			Sc	urce:	402742-003
Nitrate, as Nitrogen	ND	9.03	9.03	8.88	8.94	mg/L	98	99	0.7	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	8.03	8.07	mg/L	88	88	0.5	80-120	20	

mg/L

98

90-110

8.97

9.15

Nitrite, as Nitrogen

QCBatchID: QC1191312	Analyst:	trinh		Meth	od:	EPA 351.2						
Matrix: Water	Analyzed:	05/21/2	2018	Instrum	ent:	CHEM (group)						
			Bla	ank Sum	mary	<i>y</i>						
			Blank									
Analyte			Result	Unit	S		RE	DL	No	tes		
QC1191312MB1				'				•		"		
Total Kjeldahl Nitrogen			ND	mg/	L.		0.	4				
L	ab Conti	rol Sp	ike/ Lab	Control	Spik	e Duplicate	e Sun	nmary				
		Spike	Amount	Spike Re	esult		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPE	Notes
QC1191312LCS1	-		'									'
Total Kjeldahl Nitrogen		2.5		2.6		mg/L	104			80-120		
	Mat	rix Sp	ike/Matr	ix Spike	Dup	licate Sum	mary					
	Sample	Spike	Amount	Spike Re	esult		Reco	veries		Limit	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191312MS1, QC1191312MSD1	,		·			-				So	urce:	402756-001
Total Kjeldahl Nitrogen	ND	12.5	12.5	10	11	mg/L	80	88	9.5	80-120	20	

QCBatchID: QC1191380 Analy	st: trinh		Method	: EPA 350.1						
Matrix: Water Analyze	ed: 05/2	2/2018	Instrument	: CHEM (group)					
		В	lank Summa	ary						
		Blank								
Analyte		Result	Units		RDL	-	No	tes		
QC1191380MB1					•	•				
Ammonia, as Nitrogen		ND	mg/L		0.1					
Lab Co	ntrol S	pike/ Lab	Control Sp	ike Duplicat	te Sum	mary				
	Spik	e Amount	Spike Resu	t	Recov	eries		Lim	its	
Analyte	LCS	LCSD	LCS LC	SD Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191380LCS1				·						
Ammonia, as Nitrogen	5		4.84	mg/L	97			80-120		
Λ	latrix S	pike/Mat	rix Spike Du	ıplicate Sum	nmary					
Samp	le Spik	e Amount	Spike Resu	t	Recov	eries/		Limit	ts	
Analyte Amou	nt MS	MSD	MS MS	D Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191380MS1, QC1191380MSD1	•							Sc	urce:	402789-001
Ammonia, as Nitrogen 0.382	2 5	5	4.03 4.0	1 mg/L	73	73	0.5	80-120	20	М

Data Qualifiers and Definitions

Qualifiers

See Report Comments.

В Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BO2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

BQ4 Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.

BQ5 Minor Dissolved Oxygen loss was observed in the blank water check.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D₁ Lesser amount of sample was used due to insufficient amount of sample supplied.

D2 Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit. D3 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

Sample result is calculated on a dry weigh basis. DW

Ε Concentration is estimated because it exceeds the quantification limits of the method.

ı The sample was read outside of the method required incubation period.

Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not NC

P Sample was received without proper preservation according to EPA guidelines.

Temperature of sample storage refrigerator was out of acceptance limits.

The sample was preserved within 24 hours of collection in accordance with EPA 218.6. **P3** Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Q1 Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

S1 The associated surrogate recovery was out of control limits; result is estimated.

The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate S2

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

т Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

P2

Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

RDL Reporting Detection Limit TIC **Tentatively Identified Compounds**

	TW/RONMEN.	CUST	ODY								Da	age			1 of 1				
	Client Name			1-01-0	2001		1	-	-	-	RE	OUE	STE			SES			
		1250 Bellflo	ower Blvd								IXL	QUL	311	DAI	VALI	3L3	_	П	
		Long Beacl	h, CA 9084	10															
	Project Contact Name	Alex Long																1 1	
	Email Address									1								1 1	
		(310) 408-2										50						1 1	
-	Project Name/Number P.O. Number						-					e						1 1	
-	Sampled By		317-01				1	<u>a</u> ,				l g			- 1				
	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ontainer Type	E. Coli	Ammonia	TKN	Nitrate	Nitrite	Total Nitrogen		Ŋ.					
1	GW-B-03_180516	5/16/2018	08:50	Freshwater	3	Various	х	×	×	×	x	×							
2	GW-B-03_180516_Dup	5/16/2018	08:50	Freshwater	3	Various	x	x	×	x	x	x							
3	SW-01-D_180516	5/16/2018	10:06	Freshwater	3	Various	x	x	x	x	x	x							
4	GW-B-04_180516	5/16/2018	11:07	Freshwater	3	Various	×	x	x	x	x	x							
5	SW-03-U_180516	5/16/2018	12:06	Freshwater	3	Various	×	×	×	x	x	х					5		
6	SW-02-U_180516	5/16/2018	13:55	Freshwater	3	Various	x	x	x	x	x	х					=		
7	GW-A-07_180516	5/16/2018	14:30	Freshwater	3	Various	x	X	x	x	x	x							
8																			
9							-							4		-			
10											DE	LINOL	ISHED	BV				1	
	Type of Ice used:		Blue	None	JA ELS	Signature:					- KC	LINGO	ISHED	ы		DA"	ſE:		_
-	Sample Preservative:	Yes	No			1											. ,	110	
_	TURNAROUND TIME NEEDED:	Standard				KI	le	1	_							3	5/1	7/18	
C	OMMENTS:					Printe / N	ndst	2	.100	21/15	-51	MAL	/			TIM			
т	KN Preserved with Sulfurio	. Acid				Company: IIR		/	oa		OV	1010	_					110	
- 3	lease analyze E. coli even t												13:	40					
	ease analyze E. Con even i	though it	is past i	iolaing tin	ie	Alloway by						RECEI	VED BY			DA			
						Signature:		_	_							DA	5/	117/	'y
			4	7		Print:	3/1	iw	C							TIM	E:	134	
	Project ID#	Company:	0	in	-														

SAMPLE ACCEPTANCE CHECKLIST

Section 1	D : 4 121 19 024			
Client: IIRMES	Project: 121-18-03g			
Date Received: 5/17/18	Sampler's Name Present:	√ Yes	No	
Section 2			12.42.25.2	
Sample(s) received in a cooler? \checkmark Yes, How many? $\frac{1}{}$	No (skip section 2)		e Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 2.6 (Acceptance range is < 6°C but not frozen (for Microbiology samples, acceptive same day as sample receipt to have a higher temper Shipping Information:	#2: #3: otance range is < 10°C but not frozen).	#4: It is acceptable	for sample	
Section 3 Was the cooler packed with:	Bubble Wrap Styr Other	ofoam #4:		
Section 4		YES	NO	N/A
Was a COC received?		1	- 1	
Are sample IDs present?		1		
Are sampling dates & times present?		1	T	
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1		
Are custody seals present?		1 1 6 1	1	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	1		
Did all samples arrive intact? If no, indicate in Section 4		1	1	
Did all bottle labels agree with COC? (ID, dates and time		1		
Were the samples collected in the correct containers for		1		
Are the containers labeled with the correct prese		1		
Is there headspace in the VOA vials greater than 5-6 mi	n in diameter?			1
Was a sufficient amount of sample submitted for the re		1		
Section 5 Explanations/Comments				
Proceed to run E. coli out of holding time	4.			
Section 6	р П (1.1	w Silvania		
For discrepancies, how was the Project Manager notifie	ed? Verbal PM Initials: Email (email sent to		/	-
Project Manager's response:				¥
Completed By:		`_		

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc. 931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209 www.enthalpy.com/socal

Enthalpy Analytical, LLC

931 W. Barkley Ave - Orange, CA 92868 Tel: (714)771-6900 Fax: (714)538-1209 www.enthalpy.com info-sc@enthalpy.com

Client: IIRMES

Address: 1250 Bellflower Blvd.

Long Beach, CA 90840

Attn: Alex Long

Comments: 121-18-03h

P.O. #: C1023-180518-06

Lab Request: 402789
Report Date: 05/29/2018
Date Received: 05/18/2018
Client ID: 14135

This laboratory request covers the following listed samples which were analyzed for the parameters indicated on the attached Analytical Result Report. All analyses were conducted using the appropriate methods. Methods accredited by NELAC are indicated on the report. This cover letter is an integral part of the final report.

Sample #	Client Sample ID
402789-001	GW-C-BK-06_180517
402789-002	GW-D-07_180517
402789-003	GW-G-01_180517
402789-004	GW-D-04_180517
402789-005	GW-D-05_180517
402789-006	GW-E-03 180517

Thank you for the opportunity to be of service to your company. Please feel free to call if there are any questions regarding this report or if we can be of further service.

Report Review performed by: Chris Myrter, Project Specialist

NOTE: Unless notified in writing, all samples will be discarded by appropriate disposal protocol 60 days from date received.

The reports of the Enthalpy Analytical, Inc. are confidential property of our clients and may not be reproduced or used for publication in part or in full without our written permission. This is for the mutual protection of the public, our clients, and ourselves.

Client: IIRMES Matrix: Water Collector: Client Sampled: 05/17/2018 08:22 Site: Sample #: 402789-001 Client Sample #: GW-C-BK-06_180517 Sample Type: Analyzed By Notes **Analyte** Result DF **RDL Units Prepared** Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 1.70 0.5 05/23/18 SLL 1 mg/L Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191296 Nitrate, as Nitrogen 0.60 05/18/18 05/18/18 15:59 1 0.1 mg/L JP Nitrite, as Nitrogen ND 1 0.1 05/18/18 05/18/18 15:59 mq/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 Ammonia, as Nitrogen 0.382 1 0.1 05/21/18 05/22/18 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 TP Total Kjeldahl Nitrogen 1 0.4 05/19/18 05/21/18 mg/L Method: SM 9221-F QCBatchID: QC1191304 Prep Method: Method MPN/100ml 05/18/08 18:42 05/20/18 19:19 IPP Coliform, E. Coli -2 1 Matrix: Water Client: IIRMES Collector: Client Sampled: 05/17/2018 08:53 Site: Sample #: 402789-002 Client Sample #: GW-D-07_180517 Sample Type: Analyzed By **Analyte** Result **DF** RDL **Units Prepared Notes** Method: ALCH 4025 Prep Method: None QCBatchID: Total Nitrogen 05/23/18 ND 1 0.5 mg/L SLL Method: EPA 300.0 Prep Method: Method QCBatchID: QC1191296 Nitrate, as Nitrogen ND 0.1 mg/L 05/18/18 05/18/18 16:49 JP 1 ND 05/18/18 16:49 Nitrite, as Nitrogen 0.1 05/18/18 1 mg/L Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 ΤP Ammonia, as Nitrogen 05/21/18 05/22/18 1 0.1 mg/L Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen 1 0.4 mg/L 05/19/18 05/21/18 Method: SM 9221-F Prep Method: Method QCBatchID: QC1191304 Coliform, E. Coli 1 MPN/100ml 05/18/08 18:42 05/21/18 19:16 IPP Matrix: Water Client: IIRMES Collector: Client Sampled: 05/17/2018 09:50 Site: Sample #: 402789-003 Client Sample #: GW-G-01_180517 Sample Type: Analyzed By **RDL Analyte** Result DF Units **Prepared** Notes Method: ALCH 4025 Prep Method: None QCBatchID: **Total Nitrogen** 05/23/18 1 0.5 mg/L SH Method: EPA 300.0 QCBatchID: QC1191296 Prep Method: Method Nitrate, as Nitrogen 6.21 0.1 05/18/18 05/18/18 17:05 1 mg/L Nitrite, as Nitrogen 1 0.1 mg/L 05/18/18 05/18/18 17:05 JP Method: EPA 350.1 Prep Method: Method QCBatchID: QC1191380 Ammonia, as Nitrogen 1 0.1 ma/L 05/21/18 05/22/18 Method: EPA 351.2 Prep Method: Method QCBatchID: QC1191312 Total Kjeldahl Nitrogen ND 0.4 05/19/18 05/21/18 1 mg/L Method: SM 9221-F Prep Method: Method QCBatchID: QC1191304 Coliform, E. Coli MPN/100ml 05/18/08 18:42 05/21/18 19:16 IPP 1

Matrix: Water	Client: IIRMES			С	ollector: Client			
Sampled: 05/17/2018 10:55	Site:							
Sample #: 402789-004	Client Sample #: GW-D-04	_180517		Samp	ole Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed	Ву	Notes
Method: ALCH 4025	Prep Method: None					QCBatchID	:	
Total Nitrogen	2.54	1	0.5	mg/L		05/23/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID	: Q0	C1191296
Nitrate, as Nitrogen	2.54	1	0.1	mg/L	05/18/18	05/18/18 17:22	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	05/18/18	05/18/18 17:22	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID	: Q0	C1191380
Ammonia, as Nitrogen	ND	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1191312
Total Kjeldahl Nitrogen	ND	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	C1191304
Coliform, E. Coli	23	1	N	PN/100ml	05/18/08 18:42	05/21/18 19:16	IPP	
Matrix: Water	Client: IIRMES			С	ollector: Client			
Sampled: 05/17/2018 12:01	Site:	100517		Came	la Tima.			
Sample #: 402789-005	Client Sample #: GW-D-05	_180517		Samp	ole Type:			
Analyte	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None					QCBatchID		
Total Nitrogen	3.16	1	0.5	mg/L		05/23/18	SLL	
Method: EPA 300.0	Prep Method: Method					QCBatchID		C1191296
Nitrate, as Nitrogen	0.16	1	0.1	mg/L	05/18/18	05/18/18 17:39	JP 	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	05/18/18	05/18/18 17:39	JP	
Method: EPA 350.1	Prep Method: Method					QCBatchID		C1191380
Ammonia, as Nitrogen	2.39	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method					QCBatchID	: Q0	C1191312
Total Kjeldahl Nitrogen	3.0	1	0.4	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID	: Q0	C1191304
Coliform, E. Coli	<2	1	M	PN/100ml	05/18/08 18:42	05/20/18 19:19	IPP	
Matrix: Water	Client: IIRMES			_	ollector: Client			
Sampled: 05/17/2018 13:35	Site:			C	onector. Cheric			
Sample #: 402789-006	Client Sample #: GW-E-03	180517		Samr	ole Type:			
·								
Analyte	Result	DF	RDL	Units	Prepared	Analyzed		Notes
Method: ALCH 4025	Prep Method: None	1	0.5	mg/L		QCBatchID 05/23/18	SLL	
Total Nitrogen			0.5	mg/L				
Method: EPA 300.0	Prep Method: Method	4	0.4		05/40/40	QCBatchID		C1191296
Nitrate, as Nitrogen	2.29	1	0.1	mg/L	05/18/18	05/18/18 17:55	JP	
Nitrite, as Nitrogen	ND	1	0.1	mg/L	05/18/18	05/18/18 17:55		
Method: EPA 350.1	Prep Method: Method	4	0.4	/I	05/04/40	QCBatchID		1191380
Ammonia, as Nitrogen	3.27	1	0.1	mg/L	05/21/18	05/22/18	TP	
Method: EPA 351.2	Prep Method: Method				0.7/1.7	QCBatchID		C1191312
Total Kjeldahl Nitrogen	8.6	2	0.8	mg/L	05/19/18	05/21/18	TP	
Method: SM 9221-F	Prep Method: Method					QCBatchID		C1191304
Coliform, E. Coli	<2	1	M	PN/100ml	05/18/08 18:42	05/21/18 19:16	IPP	

QCBatchID:QC1191296Analyst:JParedesMethod:EPA 300.0Matrix:WaterAnalyzed:05/18/2018Instrument:AAICP (group)

Blank Summary													
	Blank												
Analyte	Result	Units	RDL	Notes									
QC1191296MB1	1		-		•								
Chloride	ND	mg/L	1										
Nitrate, as Nitrogen	ND	mg/L	0.1										
Nitrate, as NO3	ND	mg/L	0.44										
Nitrite, as Nitrogen	ND	mg/L	0.1										
Nitrite, as NO2	ND	mg/L	0.33										
Sulfate	ND	mg/L	0.5										

Lab Control Spike/ Lab Control Spike Duplicate Summary															
	Spike Amount Spike Result Recoveries Limits														
Analyte	LCS LCSD	LCS LCSD	Units	LCS LCSD	RPD	%Rec	RPD	Notes							
QC1191296LCS1					•										
Chloride	100	98.4	mg/L	98		90-110									
Nitrate, as Nitrogen	9.03	8.88	mg/L	98		90-110									
Nitrate, as NO3	40	39.4	mg/L	99		90-110									
Nitrite, as Nitrogen	9.15	8.60	mg/L	94		90-110									
Nitrite, as NO2	30	28.2	mg/L	94		90-110									
Sulfate	50	49.9	mg/L	100		90-110									

	Ma	trix Sp	ike/Mat	rix Spil	ke Dupli	icate Sun	nmary					
	Sample	Spike	Amount	Spike	Result		Reco	veries		Limi	ts	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191296MS1, QC1191296MSD1				•			•			Sc	ource:	402729-001
Chloride	80.2	100	100	169	172	mg/L	89	92	1.8	80-120	20	
Nitrate, as Nitrogen	ND	9.03	9.03	8.63	8.87	mg/L	96	98	2.7	80-120	20	
Nitrate, as NO3	ND	40	40	38.2	39.3	mg/L	96	98	2.8	80-120	20	
Nitrite, as Nitrogen	ND	9.15	9.15	7.50	7.70	mg/L	82	84	2.6	80-120	20	
Nitrite, as NO2	ND	30	30	24.6	25.2	mg/L	82	84	2.4	80-120	20	
Sulfate	12.4	50	50	59.7	61.0	mg/L	95	97	2.2	80-120	20	
QC1191296MS2										Sc	ource:	402778-001
Chloride	68.2	100		164		mg/L	96			80-120		
Nitrate, as Nitrogen	ND	9.03		9.15		mg/L	101			80-120		
Nitrate, as NO3	ND	40		40.5		mg/L	101			80-120		
Nitrite, as Nitrogen	ND	9.15		8.11		mg/L	89			80-120		
Nitrite, as NO2	ND	30		26.6		mg/L	89			80-120		
Sulfate	11.5	50		61.3		mg/L	100			80-120		

QCBatchID: QC1191312	Analyst:	trinh		Met	hod:	EPA 351.2						
	•											
Matrix: Water	Analyzed:	05/21/	2018	Instrun	nent:	CHEM (group)						
			BI	ank Sun	nmar	у						
			Blank									
Analyte			Result	Un	its		RE	DL	No	tes		
QC1191312MB1				1		1						
Total Kjeldahl Nitrogen			ND	mg	J/L		0.	4				
La	ab Conti	ol Sp	ike/ Lab	Control	l Spik	ke Duplicate	e Sun	nmary				
		Spike	Amount	Spike R	Result		Reco	veries		Lim	its	
Analyte		LCS	LCSD	LCS	LCSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
QC1191312LCS1												
Total Kjeldahl Nitrogen		2.5		2.6		mg/L	104			80-120		
	Mat	rix Sp	ike/Matı	rix Spike	Dup	licate Sum	mary					
	Sample	Spike	Amount	Spike R	Result		Reco	veries		Limit	:S	
Analyte	Amount	MS	MSD	MS	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
QC1191312MS1, QC1191312MSD1	1			1						So	urce:	402756-001
Total Kjeldahl Nitrogen	ND	12.5	12.5	10	11	mg/L	80	88	9.5	80-120	20	

st: trinh		Meth	od:	EPA 350.1						
ed: 05/22	2/2018	Instrum	ent:	CHEM (group)						
	BI	ank Sum	mar	у						
	Blank									
	Result	Units	3		RE	DL	No	tes		
•		•		. '		,				
	ND	mg/l	-		0.	1				
ntrol S _i	oike/ Lab	Control	Spik	re Duplicate	Sun	nmary				
Spike	Amount	Spike Re	sult		Reco	veries		Lim	its	
LCS	LCSD	LCS L	CSD	Units	LCS	LCSD	RPD	%Rec	RPD	Notes
5		4.84		mg/L	97			80-120		
latrix S _l	oike/Mati	rix Spike	Dup	licate Sum	mary					
e Spike	Amount	Spike Re	sult		Reco	overies		Limi	ts	
nt MS	MSD	MS I	MSD	Units	MS	MSD	RPD	%Rec	RPD	Notes
•		•		-				Sc	ource:	402789-001
	ntrol Spike LCS 5	Blank Result ND ntrol Spike/ Lab Spike Amount LCS LCSD 5 latrix Spike/Mate Result	Blank Sumi Blank Result Units ND mg/L ntrol Spike/ Lab Control Spike Amount Spike Re LCS LCSD LCS L 5 4.84 Datrix Spike/Matrix Spike Re Le Spike Amount Spike Re Le Spike Amount Spike Re LCS LCSD LCS L Spike Amount Spike Re LCS LCSD LCS L Spike Amount Spike Re LCS LCSD Spike R	Blank Summar Blank Result Units ND mg/L ntrol Spike/ Lab Control Spike Spike Amount Spike Result LCS LCSD LCS LCSD 5 4.84 Datrix Spike/Matrix Spike Dup De Spike Amount Spike Result Spike Amount Spike Result Spike Amount Spike Dup	Blank Summary Blank Result Units ND mg/L mtrol Spike/ Lab Control Spike Duplicate Spike Amount Spike Result LCS LCSD LCS LCSD Units 5 4.84 mg/L datrix Spike/Matrix Spike Duplicate Summer Spike Amount Spike Result Ele Spike Amount Spike Result	Blank Summary Blank Result Units RE	Blank Summary Blank Result Units RDL	Blank Summary Blank Result Units RDL No	Blank Summary	Blank Summary Blank Result Units RDL Notes

Data Qualifiers and Definitions

Qualifiers

A See Report Comments.

B Analyte was present in an associated method blank.

B1 Analyte was present in a sample and associated method blank greater than MDL but less than RDL.

BQ1 No valid test replicates. Sample Toxicity is possible. Best result was reported.

BQ2 No valid test replicates.

BQ3 No valid test replicates. Final DO is less than 1.0 mg/L. Result may be greater.

BQ4 Minor Dissolved Oxygen loss was observed in the blank water check, however, the LCS was within criteria, validating the batch.

BQ5 Minor Dissolved Oxygen loss was observed in the blank water check.

C Possible laboratory contamination.

D RPD was not within control limits. The sample data was reported without further clarification.

D1 Lesser amount of sample was used due to insufficient amount of sample supplied.

D2 Reporting limit is elevated due to sample matrix. Target analyte was not detected above the elevated reporting limit.

D3 Insufficient sample was supplied for TCLP. Client was notified. TCLP was performed per the Client's instructions.

DW Sample result is calculated on a dry weigh basis.

E Concentration is estimated because it exceeds the quantification limits of the method.

I The sample was read outside of the method required incubation period.

J Reported value is estimated

L The laboratory control sample (LCS) or laboratory control sample duplicate (LCSD) was out of control limits. Associated sample

data was reported with qualifier.

M The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits due to matrix interference. The associated

LCS and/or LCSD was within control limits and the sample data was reported without further clarification.

M1 The matrix spike (MS) or matrix spike duplicate (MSD) is not within control limits due to matrix interference.

M2 The matrix spike (MS) or matrix spike duplicate (MSD) was not within control limits. The associated LCS and/or LCSD was not

within control limits. Sample result is estimated.

N1 Sample chromatography does not match the specified TPH standard pattern.

NC The analyte concentration in the sample exceeded the spike level by a factor of four or greater, spike recovery and limits do not

apply.

P Sample was received without proper preservation according to EPA guidelines.

P1 Temperature of sample storage refrigerator was out of acceptance limits.

P3 Per Client request, sample was composited for volatile analysis. Sample compositing for volatile analysis is not recommended

due to potential loss of target analytes. Results may be biased low.

Analyte Calibration Verification exceeds criteria. The result is estimated.

Q2 Analyte calibration was not verified and the result was estimated.

Q3 Analyte initial calibration was not available or exceeds criteria. The result was estimated.

S The surrogate recovery was out of control limits due to matrix interference. The associated method blank surrogate recovery

was within control limits and the sample data was reported without further clarification.

The sample was preserved within 24 hours of collection in accordance with EPA 218.6.

S1 The associated surrogate recovery was out of control limits; result is estimated.

S2 The surrogate was diluted out due to the presence of high concentrations of target and/or non-target compounds. Surrogate

recoveries in the associated batch QC met recovery criteria.

S3 Internal Standard did not meet recovery limits. Analyte concentration is estimated.

T Sample was extracted/analyzed past the holding time.

T1 Reanalysis was reported past hold time due to failing replicates in the original analysis (BOD only).

T2 Sample was analyzed ASAP but received and analyzed past the 15 minute holding time.

T3 Sample received and analyzed out of hold time per client's request.

T4 Sample was analyzed out of hold time per client's request.

T5 Reanalysis was reported past hold time. The original analysis was within hold time, but not reportable.

T6 Hold time is indeterminable due to unspecified sampling time.

T7 Sample was analyzed past hold time due to insufficient time remaining at time of receipt.

Definitions

P2

Q1

DF Dilution Factor

MDL Method Detection Limit. Result is reported ND when it is less than or equal to MDL.

ND Analyte was not detected or was less than the detection limit.

NR Not Reported. See Report Comments.

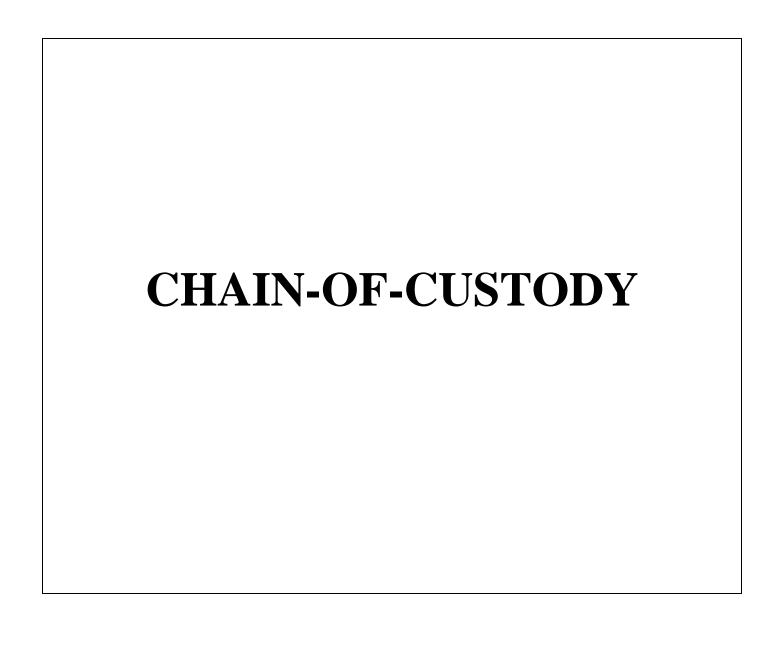
RDL Reporting Detection Limit
TIC Tentatively Identified Compounds

402/89

Institute for Integrated Research in Materials, Environments, and Society

1250 Beliflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

	WVIRONMEN.	(CHAII	N-OF-0	CUST	ODY								k	page			1	of 1	
-	Client Name										RE	QUE	STE	DA	NAL	YS	ES			300
	Address	1250 Bellflo											1.1						j	
		Long Beach	h, CA 9084	10					l Y											
-	Project Contact Name Email Address		mail com				1													- (
-		(310) 408-2					1													
	Project Name/Number						1				8 1	_		- 1						
	P.O. Number		518-06				1	_				ego.								
200	Sampled By	RL					- =	onisi		ø	4	Z.								
Ē	Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	C Quantity	ontainer Type	E. Coli	Ammonia	TKN T	Nitrate	Nitrite	Total Nitrogen								
1	GW-C-BK-06_180517	5/17/2018	08:22	Freshwater	3	Various	x	×	×	x	x	×				-				
2	GW-D-07_180517	Various	×	Х	X	X	X	х												
3	GW-G-01_180517	3	Various	×	×	×	X	x	Х											
4	GW-D-04_180517	3	Various	x	x	X	x	x	x											
5	GW-D-05_180517	5/17/2018	12:01	Freshwater	3	Various	×	x	X	х	x	х								
6	GW-E-03_180517	5/17/2018	13:35	Freshwater	3	Various	×	х	х	x	х	х		3						
7																				
8																				
9										111										
10									****	Pat										
	Type of Ice used:	Wet	Blue	None		Signature:					RE	LINQL	ISHED	BY			DATE	_		
	Sample Preservative:	Yes	No			//	,	1		/										
	TURNAROUND TIME NEEDED:	Standard				KME	W	10									E	110	1/18	>
-	COMMENTS:					Print: Line			nn	((Slade	11-1					TIME:		110	
	TICH B	A =1.1				Company: IIR		Je	Cifi	3 6	1010	00		-			100000000000000000000000000000000000000	5:6		
TKN Preserved with Sulfuric Acid							WILD										13	0 . 0	2	
Please analyze E. coli even though it is past holding time							, RECEIVED BY													
						Signature:				1							DATE			
						1/100	1	1	/	E	_					07/19/18				
			Print:	11/1 - 1 - 8h							TIME:									
	Project ID#						7			- / \							,		22	_
	Fiojectio#		101												18.42					


5T:0.1°C/CT:4.2°C

SAMPLE ACCEPTANCE CHECKLIST

Section 1	7.7			
Client: IIRMES	Project:			
Date Received: 05/18/18	Sampler's Name Present:	Yes	No	
Section 2				
Sample(s) received in a cooler? ✓ Yes, How many? 1	No (skip section 2)	7 - 3 - 7 - 7	le Temp (°C) (No Cooler)	
Sample Temp (°C), One from each cooler: #1: 0.1 (Acceptance range is < 6°C but not frozen (for Microbiology samples, accepthe same day as sample receipt to have a higher temper Shipping Information:	eptance range is < 10°C but not frozen). I	t is acceptable		s collected
Section 3				
Was the cooler packed with: Ice Ice Packs Paper None	Bubble Wrap Styro	ofoam		
Cooler Temp (°C): #1: <u>4.2</u> #2:	#3:	#4:		
Section 4		YES	NO	N/A
Was a COC received?		1		
Are sample IDs present?		1		
Are sampling dates & times present?		1		
Is a relinquished signature present?		1		
Are the tests required clearly indicated on the COC?		1	1 - 1	
Are custody seals present?			1	
If custody seals are present, were they intact?				1
Are all samples sealed in plastic bags? (Recommended	for Microbiology samples)	1		
Did all samples arrive intact? If no, indicate in Section	4 below.	1		
Did all bottle labels agree with COC? (ID, dates and tim	nes)	1	11	
Were the samples collected in the correct containers f	or the required tests?	1		
Are the containers labeled with the correct prese	ervatives?	1		
Is there headspace in the VOA vials greater than 5-6 m	m in diameter?	LVIII		1
Was a sufficient amount of sample submitted for the r	equested tests?	1		
Section 5 Explanations/Comments				
Section 6	is The second	AT ALCOHOLOGICAL		
For discrepancies, how was the Project Manager notifi	일이 			-
Project Manager's response:	Email (email sent to,	/on):	./	1
Completed By:	Date: 5 18 8	_		

Enthalpy Analytical, a subsidiary of Montrose Environmental Group ,Inc.
931 W. Barkley Ave, Orange, CA 92868 • T: (714) 771-6900 • F: (714) 538-1209
www.enthalpy.com/socal
Sample Acceptance Checklist – Rev 4, 8/8/2017

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Client: LARWQCB	Date Received: 5/15/18
Temperature: °C	Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes I	No Not Applicable
COC received with samples? Yes COC signed and dated? Yes	Notes:
Analyses requested on COC? Yes	X No
Correct sample containers used? Yes Container labels match COC? Yes	No No
Adequate sample volumes received? Yes Sample containers received intact? Yes	X No No
Number of Samples Received:	
	/
Samples checked by:	Date: 5/15/18

	(CHAIN	N-OF-	CUST	ODY						pa	age		1 of	2			
Client Name									REQ	UEST	ED AN	VALYS	SES					
		apa St. Suite	4A											FEMILE				
	Santa Bari	bara, CA 9	3101			1 1												
Project Contact Name						4 1												
Email Address	-		<u>n</u>			- 1												
Project Name/Number	805-979-9					1				1								
P.O. Number		vivo otaaj				1							1					
Sampled By	Rebecca L	ustig																
	Sample	Sample	Sample	Co	ontainer	S								1				
Client Sample ID / Description	Date	Time	Matrix	Quantity	Туре	ш				4		_	-					
1 GW-G-BK-05_180514_E1	35/14/18	853	FW	1		X				41.								
2 GW-C-05_180514	1	853		- 1		X						_						
3GW-E-02_180514		1016		1		X												
45W-05- D_180514		1038	1	1		X												
5 SW-04-U_ 180514		1202		1		×												
6 SW-04-B_180514		1250	V	1		X												
7 DW-03-0_180514	V	1343	V	V					1112									
8							- 1	-				_	1	-				
9													4	_				
10															1			
Type of Ice used:	(Wet)	Blue	None		Signature:				RELI	NQUISHE	DBY		DATE:					
Sample Preservative:	(Yes)	No			V)	0		all	1	0 01		_	5	14/2	018			
TURNAROUND TIME NEEDED:	0				ne	per	cu	Xt	toll				101	1712	010			
COMMENTS:					Print:	ZHY	11	112	TIA				TIME	:				
					Company:	nec	11/		31/19				-	1-11	1			
					VC	ET	H						/	54	0			
					16	01	V		RI	CEIVED	ВҮ							
					Signature:								DATE	=:				
					SH	PP	ED	BY	FE	30	EX		5	1/15	/18			
					Print:													
0					Company:		0	1										
Project ID#																		

ENV/RONMEN.	-	HAIR	I-OF-	CUST	ODY								page	9		3	of	2
			4-01 -	0001					REG	UES	TED	ANA	LYS	ES				
Client Name	924 Anaca		4A				5	T	T		-31 P					- 10		1
7.00		ara, CA 93				6	(EPA 350.1) & Total Nitrogen			1			1					
Project Contact Name						& Nitrite (EPA 300.0)	tal N						1					
Email Address	jervin@geo	osyntec.com	n			4	8 To										- 1	- 1
	805-979-9					E E	9.4											
Project Name/Number	VCEHD O	WTS Study				trite	A 35			- 1							. 1	
P.O. Number	Dekessel					Z	(EP)											
Sampled By	Rebecca L	ustig				te 8						1		1	1.1			
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ntainer Type	Nitrate	Ammonia					+		-				
1 GW-C-BK-05-180514	5/14/18	953	FW	1	1L	Х	X		-	-		+	-	-				
2 GW-C-BK-C5_1805/4_ER	1	853				X	X			_		-	-	-	-		-	
3 GW-E-02_1805/4		1014				X	X			_	-	-		-				110
4 SW-05-D_180514		1038		1	- 1/2	X	X				-			+				
5 SW-04-U_ 1805/14		1202				X	X				-	-		+	-			
6SW-04-D_180574		1250			1	X	X						-	+				
7 SW-03-D-180514	V	1343	V	1	V	X	×					+	+	1	-			
8						-	-					-	+	-				
9						-				-		-	+	+				
10						1_			-	RE	INOUI	SHEDE	BY			_		
Type of Ice used	: (Wet)	Blue	None		Signature;		-			1	Liitao				DAT	E: /	1	
Sample Preservative	: Yes	(No)				1.		0.	21	11.		-	9	>		-/1	11	
TURNAROUND TIME NEEDED):				De	De	ec	llf	X	tt	EL.	19			1	יוןכ	+/	2018
COMMENTS:					Print: RF	20	10/	1	1	110	770	3	4		TIM	E:		,
					Company:							1				15	4	1
					VCE	SH	٨								1	1	1	0
					V						RECEI	VED BY			IDA:	TT.	_	
					Signature:										DA	IE.		
					SH	1PF	EL),	B	Y	F	50	E	X		51	15	/18
					Print:	//	//x .	M	M						TIM	IE:		
V =					Company:	W	1		1									
Project ID	#		-01															

Samples checked by:

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

emperature:°c		Date Received: 5/14/18 Wet Ice Blue Ice Dry Ice N/A
emperature: C		Wet ite Big ite Biy ite 14/A
Custody seals present and intact? Yes	No	Not Applicable
OC received with samples?	Yes	Notes:
COC signed and dated?	Yes	No
Analyses requested on COC?	Yes	No
Correct sample containers used?	Yes X	No
Container labels match COC?	Yes X	No
Adequate sample volumes received?	Yes X	No
Sample containers received intact?	Yes X	No
Number of Samples Received:		

CHAIN Client Name Geosyntec Address 924 Anacapa St Suite Santa Barbara, CA 93 Project Contact Name Jared Ervin Email Address jervin@geosyntec.com Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Client Sample ID / Description Sample Date Time	4A 101		ontainer Type	Nitrate & Nitrite (EPA 300.0)	Ammonia (EPA 350 1) & Total Nitrogen		RE	QUE	STE	DANA	ALYS	ES			
Address 924 Anacapa St Suite Santa Barbara, CA 93 Project Contact Name Jared Ervin Email Address jervin@geosyntec.com Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Client Sample ID / Description Sample Date Time	Sample Matrix			Nitrate & Nitrite (EPA 300.0)	mmonia (EPA 350.1) & Total Nitrogen										
Project Contact Name Jared Ervin	Sample Matrix			Nitrate & Nitrite (EPA 300	mmonia (EPA 350 1) & Total N										
Phone 805-979-9129 Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Client Sample ID / Description Email Address ervin@geosyntec.com	Sample Matrix			Nitrate & Nitrite (EPA	mmonia (EPA 350 1) & To										
Project Name/Number VCEHD OWTS Study P.O. Number Sampled By Rebecca Lustig Client Sample ID / Description Sample Date Time	Matrix			Nitrate & Nitrite (E	mmonia (EPA 350 1)										
P.O. Number Sampled By Rebecca Lustig Client Sample ID / Description Sample Date Time	Matrix			Nitrate & Nitrit	mmonia (EPA 3										
Sampled By Rebecca Lustig Client Sample ID / Description Sample Date Time	Matrix			Nitrate & N	mmonia (E							1			
Client Sample ID / Description Sample Date Time	Matrix			Nitrate	штоп									1	
	FW	1		-	<						+		-		-
12111-1-00 180010 1010110			1L	×	Х					-	-			+	+
		1		X	X			1		11				_	-
900 81 00 210 0.0				X	X	431			1						
BW-4-04-180515 1000		-	-	X	/								- 1		
GW-A-01_180515 1033		++-	-	-	X		+								
CW-F-02 180515 1125		1		X	X	-		+			+				1
GW-C-07_1805/5 1343		1	1	1	X		+	-				+		\pm	+
GW-C-08_180515 V 1404	V	V	V	X	X										
9														-	-
								RELING	UNIONE.	DPV					
Type of Ice used: (Wet) Blue	None		Signature:			_		A	UISHL	0.01		DAT	E:,	1	
Sample Preservative: Yes No			1	. 4	0.0	N.	7	1	1	10		-	11=	lar	110
TURNAROUND TIME NEEDED:			ppe	be	ec	ec	(/	100		9		-5	110	120	10
COMMENTS:			Print:	BE	001	4	205	TIG				TIME	: ;		
			Company:			0 -	~	10					15	53	35
			VAN	TUR	9	(0.	61	REC	EIVED	BY					
			Signature:									DAT	E:		
			9.1.	20-	1	nul		-1	EV				_1	. 1	10
			SHI)	PPF	7	Dy	FE	ED_	EX			- :	5/	4	18
			Print:	1/1	a-	In	1					TIM	E:	-,-	
Project ID#			Company:	000			/								

		CHAIN	N-OF-	CUS	TODY						pag	je		2 of	2			
Client Name	Geosynt			-					REQ	JESTE	ED AN	ALYS	ES					
Address	924 Ana	capa St. Suite	e 4A												-177			
	Santa Ba	arbara, CA 9	3101															
Project Contact Name		122												-1-1				
Email Address	-		<u>n</u>			-												
Phone Project Name/Number	805-979					1					- 1							
P.O. Number		OW 15 Study				1												
Sampled By		Lustig				1								1 1				
	Sample	Sample	Sample	1 0	Container	coli												
Client Sample ID / Description	Date	Time	Matrix	Quantity	Туре	ш												
19W-A-03_180515	5/15/19		FW		Plastic	x												
2 GW-A-02 _ 180515	1	930	1	1		X												
3 GW-A-04_180515		1000				×												
4 GW-A-01_180515		1033				X							1					
5 GW-F-02 _ 180515		1125				X							11					
6 GW-C-07-180515		1343	1	1		X				1111								
7GW-C-08_180515	110	1404	V	V	V	X			17.1	423				1 1 1				
8																		
9																		
10																		
Type of Ice used:	(Wet)	Blue	None		Signature:				RELIN	IQUISHE	DBY		DATE					
Sample Preservative:	(Yes)	No		1	Signature:		- 4	w)	0			DATE:					
TURNAROUND TIME NEEDED:					Kok	ecci	1	1	ist	LR			5/	15/20	018			
COMMENTS:					Print:			1		1			1					
					REBE	ccf		LUS	119				TIME:		7 -			
					Company:								1	51	55			
					VENTU	RA	Co.	E	HA									
					Signature:				RE	CEIVED	BY		DATE:					
					2.3									1				
					SH	IPPE	DI	3Y	FEL	E	χ		5	/14/	18			
					Print:	11	1x-	In	7				TIME:	1 . 1	10-27			
Project ID#					Company:	VI	100	/	/									
FTOJECTID#																		

Samples checked by:

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Γemperature: Ϥ°C			Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes	No	Not Ap	oplicable
COC received with samples?	Yes X	No	Notes:
COC signed and dated?	Yes X	No	
Analyses requested on COC?	Yes X	No	
Correct sample containers used?	Yes	No	
Container labels match COC?	Yes X	No	
Adequate sample volumes received?	Yes X	No	
Sample containers received intact?	Yes X	No	
Number of Samples Received:			

Date: 5/17/18

	(CHAIN	N-OF-	CUST	ODY							1	page			1 of	2
Client Name										REQ	UEST	EDA	NAL	YSES			
		pa St Suite	4A				u.	1			-1						
	Santa Barl	para, CA 93	3101			6	(EPA 350 1) & Total Nitrogen			1			- 1		1 1		
Project Contact Name						90	Z Z										
Email Address			n			₹ e	& To										
The state of the s	805-979-9					Ü	0.1)					Y 1			1 1		
Project Name/Number P.O. Number	ACEHD O	W1S Study				trite	A 35								1 1		
Sampled By	Rebecca L	ustia				Z	(EP										
3000,000	275	Sample	Sample		ontainer	Nitrate & Nitrite (EPA 300.0)	опів	1	- 1					-			
Client Sample ID / Description	Sample Date	Time	Matrix	Quantity		Z E	Ammonia						- 1/	_		-	-
1 GN-B-03-180516	श्रीवाहि	850	FW	1	1L	X	х									-	
2 GW-B-03_180516_DUP	1	850	1	1		X	X			4	-				+	-	-
3 SW-01-D_180516		1006				Χ	X				_	-		-	-		
4GW-B-04-180516		1107				Х	X							-	-	-	
5 SW-03-12-180514		1206				X	X						-				
6 SW-02-11-180516		1355				X	X							_			
19W-A-07_180516	V	1430	V	V	V	X	X		_	-	4						
8						-				4	+						
9				-		\vdash				+	+	+			+		
10			A STATE OF THE STA			1_				REL	NQUISH	ED BY			4		
Type of Ice used:	(Wet)	Blue	None		Signature:	/)							DA	TE:	4	
Sample Preservative:	Yes	(No)			1	1	-	-		-	Taken			=	5/11	01	2010
TURNAROUND TIME NEEDED:					PX	18	1	41	LA				3		111	2/0	2018
COMMENTS:					Print:	250	01		1.1	TE	0			TIN	F.		
					REL	OFC	COT	2 /	40	311	9	_			10	, ,	1
					Company:	10	1	7	1						13	5	0
						/ _	-	_/_	IC	R	ECEIVE	BY					4
					Signature:									DA	TE:		
					SI	1	n		0	1 -	-	0	,		-1	10	110
					24	41	PEU	2	Bu	J P	ED	41		-	5/	1//	18
4					Print:	1/1	x -	n	~					TIN	IE:		
D1					Company:	100	-		1								
Project ID#			-														

Institute for Integrated Research in Materials, Environments, and Society

1250 Bellflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

WHITH	(CHAIN	N-OF-	CUST	ODY						pa	ge		2	of 2
Client Name			• • •	-					REQ	UESTI	D AN	ALYS	ES		
		ipa St. Suite	e 4A			T			ETI						
		para, CA 93								1 1					
Project Contact Name								1		1/ /					
	Email Address jervin@geosyntec.com				1										
	Phone 805-979-9129				4 1										
	mber VCEHD OWTS Study				1										
P.O. Number Sampled By	Pahacca I	uetio				1									
Sampled by				1 0	- Antonia	ie co			1						
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	ontainer Type	ы								-	+
1GW-8-03_180516	5/14/18	850	FW	1	100	x				-1					-
2 GW-8-03_180516_DUP	1	850	1	1		×								-	+
390-01-0-180516		1006				X						-		-	-
4 GW-18-04-180516		1107				×								-	1
590-03-U_1805/16		1206				×									
65N-02-U_1805/6		1355				X	14								
1GW-A-07_180516	W	1430	d	V		×									
8		1													
9															
10	E.					1									
Type of Ice used:	(Wet)	Blue	None		Signature:	_ /	7		REL	NQUISHE	DBY		DATE	1	1
Sample Preservative:	(Yes)	No			4) X)	1	6				-		1000
TURNAROUND TIME NEEDED					P	M	is	the	1				5	114	1201
COMMENTS:					Print: Re	BEC	OA		10	517	9		TIME		
					Company:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				71			7 /	3	500
					VC	- ET	HD						1		P
1					Signature:				R	ECEIVED	BY		DATE		
					Signature.			0:1							
					SHII	PET) 4	34	FE	DE	X		- 5	-/ v	7/18
					Print:	41	W-	Th	1		1		TIME	1	
Project ID#					Company:	-00			(
Project IDA	Y														

THE SHALL SH

Sample Receipt Form

Institute for Integrated Research in Materials, Environments, and Society (IIRMES)

Temperature: °C			Wet Ice Blue Ice Dry Ice N/A
Custody seals present and intact? Yes	No	Not Ap	pplicable
COC received with samples?	Yes X	No	Notes:
COC signed and dated?	Yes X	No	
Analyses requested on COC?	Yes \chi	No	
Correct sample containers used?	Yes X	No	
Container labels match COC?	Yes	No	
Adequate sample volumes received?	Yes X	No	
Sample containers received intact?	Yes X	No	
Number of Samples Received:			

Samples checked by: Www Date: 5/18/18

Institute for Integrated Research in Materials, Environments, and Society

1250 Bellflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

	CHAIN-OF-CUSTODY							р				page 1 d		1 of	of J		
Client Name	Geosynte	c				REQUESTED ANALYSES											
Address	924 Anaca	apa St. Suite	e 4A				eu										
		bara, CA 9	3101			6	litrog										1
Project Contact Name Jared Ervin					300.0)	otal N										1	
	Email Address jervin@geosyntec.com Phone 805-979-9129					(EPA	& To										1
Project Name/Number			,			e (E	50.1)			1 1							
P.O. Number						Nitrite	PA3										-
Sampled By	Rebecca l	ustig				oŏ.	ia (E							1			
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	Container Type	Nitrate	Ammonia (EPA 350.1) & Total Nitrogen										
1 GN-C-BK-06-180517	5/17/19	822	FW	1	1L	х	X										
2 GN-D-07-180517	-	853	1	1	1	X	X										
3 GW-G-01-180517		950				X	X										
4 GW-D-04_180517		1055				X	X										
5 GW-D-05_180517		1201	1			X	X										
6 GW-E-03_180517		1355	V	A	V	×	X		11								
7									12								
8																	
9																	
10		77.7															
Type of Ice used:	(Wet)	Blue	None					_	RI	LINQU	ISHED B	Υ			-		
Sample Preservative:	Yes	(No)		Lesson	Signature:		n	0	1	(3)			D.	ATE:	- 1		
TURNAROUND TIME NEEDED:						A	0	XII	M	1			ے ا	5/1	1	201	Q
COMMENTS:					Print:	//		10-		1			-	0/1	11	001	-
					RE	BE	CC	A	61	35	7G		TI	ME:			٦
					Company:	10		~1 .	0	-	,			IZ	-4	1/2	1
						VC	t	111)_		/FD DV			1_	, ,	V	4
					Signature:		-			RECEI	VED BY		D.	ATE:			Ť
),	200	~	211	-	^ 7	_		,		,	
					SHIPPED, BY FED EX						51	18/	18				
						Print:					TI	ME:					
Project ID#					Company:	000	-	/									
Project ID#																	

Institute for Integrated Research in Materials, Environments, and Society

1250 Bellflower Blvd., Long Beach, CA, 90840, 562-985-2469, www.iirmes.org

ANALON MEA	CHAIN-OF-CUSTODY											pa	age		3	of	2
Client Name				300.					F	REQU	ESTE	DAI	VALY	SES			
		apa St. Suite	e 4A									71					
	Santa Bar	bara, CA 93	3101											4		- 1	- 101
Project Contact Name	Jared Ervi	n									1 1						
	Email Address jervin@geosyntec.com				1					1 1							
	Phone 805-979-9129				-					1 1					- 1		
	VCEHD OWTS Study				1					1 1							
P.O. Number Sampled By		ustia				1										- 1	
ounpied by			Cample	T C.	ntainer	coli											
Client Sample ID / Description	Sample Date	Sample Time	Sample Matrix	Quantity	Туре	ш				-				+		+	-
1 QW-CBK-06_180517	5/17/18	822	FW	1 = 1		Х			_					-			-
2 GW-D-07_180517		853	1			x		4	-					-			+
3GW-G-01-180517		950				X							-				-
4 GW-D-04_180517		1055				X			-	-			-				
5 GW-D-05_ 180517		1201				X				-			-	-		-	-
6GW-E-03_180517		1335	V			X			1	-			-	-			
7									-					-		-	
8				J		1		-				\vdash					-
9										-	-			-		-	-
10	11									DEL IN	QUISHE	D. BV					
Type of Ice used		Blue	None		Signature: /	7	1)		KELIN	QUISHE	DBI		DAT	E	i	
Sample Preservative		No			. 4	-	Y		1	10				E	11:	7/1	DONE
TURNAROUND TIME NEEDED					9	1	M	to	l	ca					li	1 10	3018
COMMENTS:					Print	EO	00		11	CTT	1	_		TIM	E:	_	
					Company:	21	0		~0	-11	9				12	-4	16
					VCE	H.									<u></u>	, /	4
					Signature:				-	REC	EIVED	ВҮ		DA	TE:		
					- 1			0-	, ,	_	_				,		1
					SHIP	PE	0	BI	1 1	ED	E	χ		- 0	5/1	8/	18
					Prints	1/4	12-	n	4					TIN	E:	1	
Project ID	#				Company:	7			/								
1 Toject ibi								_			_	_		_	_	_	

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants **Samples Received:** 8/26/2017 **Report Generated:** 7/20/2018

SM#	Sample ID	δ¹8O-NO₃ Results ‰	δ¹5N-NO₃ Results ‰
SM-7H26001	GW-B-04_170823	3.76	6.15
SM-7H26002	GW-C-01_170823	6.36	11.38
SM-7H26003	GW-F-02_170823	7.49	8.61
SM-7H26004	GW-A-07_170824	3.65	7.54
SM-7H26005	GW-A-03_170824	3.24	5.87
SM-7H26006	GW-A-02_170824	3.61	5.63
SM-7H26007	GW-A-04_170824	3.75	5.66
SM-7H26008	GW-C-BK-05_170825-EB	Low Nitrate	Low Nitrate
SM-7H26010	SW-03-D_170825	9.07	15.08
SM-7J18017	GW-C-BK-05_170825	6.43	10.76

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Analyses were performed and described by subcontracted USGS RSIL.

4967 SW 75th Avenue Miami, FL 33143 Phone: (1) 786-220-0379 Fax: (1) 786-513-2733

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants **Samples Received:** 9/22/2017 **Report Generated:** 7/20/2018

SM#	Sample ID	δ¹8O-NO₃ Results ‰	δ¹⁵N-NO₃ Results ‰
SM-7I22028	GW-D-04_170918	7.1	11.81
SM-7I22029	GW-D-05_170918	2.05	2.98
SM-7I22030	GW-A-01_170918	3.61	7.23
SM-7I22031	GW-C-BK-06_170919	12.37	17.5
SM-7I22032	GW-D-07_170919	Low Nitrate	Low Nitrate
SM-7I22033	SW-03-U_170919	7.1	11.1
SM-7I22034	GW-C-07_170919	6.18	10.71
SM-7I22035	GW-C-08_170919	6.12	10.94
SM-7I22036	GW-C-04_170919	7.4	12.08
SM-7I22037	GW-B-03_170920	3.85	6.15
SM-7I22038	GW-G-02_170920	4.41	11.32
SM-7I22039	SW-03-D_170920	9.83	16.27
SM-7I22040	GW-B-05_170921	4.43	7
SM-7I22041	GW-G-01_170921	8.63	7.24
SM-7I22042	GW-E-03_170921	8.01	7.64

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Analyses were performed and described by subcontracted USGS RSIL.

Fax: (1) 786-513-2733

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants Samples Received: 4/5/2018 Report Generated: 7/20/2018

neport denerate	.u. 7/20/2010		
SM#	Sample ID	δ ¹⁸ O-NO₃ Results ‰	δ¹⁵N-NO₃ Results ‰
SM-8D05001	SW-04-D_180402	7.27	11.98
SM-8D05002	GW-E-02_180402	8.53	7.79
SM-8D05003	GW-E-03_180402	6.93	7.21
SM-8D05004	SW-05-D_180402	5.88	7.71
SM-8D05005	SW-04-u_180402	6.98	10.41
SM-8D05006	SW-03-D_180402	3.06	5.93
SM-8D05007	GW-A-03_180403	3.46	6.88
SM-8D05008	GW-A-02_180403	3.46	6.12
SM-8D05009	GW-A-04_180403	3.81	5.92
SM-8D05010	GW-A-01_180403	3.71	7.29
SM-8D05011	GW-F-02_180403	7.49	8.88
SM-8D05012	SW-01-D_180403	0.86	2.59
SM-8D05013	GW-C-07_180403	4.33	9.01
SM-8D05014	GW-C-08_180403	4.18	8.39
SM-8D05015	GW-B-03_180404	2.93	5.81
SM-8D05016	GW-C-BK-06_180404	Low Nitrate	Low Nitrate
SM-8D05017	GW-D-07_180404	6.64	11.22
SM-8D05018	SW-03-u_180404	3.61	6.83
SM-8D05019	GW-A-07_180404	3.59	7.67
SM-8D05020	SW-02-D_180404	1.81	3.45

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Analyses were performed and described by subcontracted USGS RSIL.

Fax: (1) 786-513-2733

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants **Samples Received:** 4/7/2018 **Report Generated:** 7/20/2018

SM#	Sample ID	δ ¹⁸ O-NO₃ Results ‰	δ¹⁵N-NO₃ Results ‰
SM-8D07001	SW-02-u_180405	3.45	4.73
SM-8D07002	GW-D-05_180405	7.98	10.3
SM-8D07003	GW-G-02_180405	3.29	10.78
SM-8D07004	GW-B-04_180405	2.93	6.26
SM-8D07005	GW-G-01_180406	8.22	7.27

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Fax: (1) 786-513-2733

Analyses were performed and described by subcontracted USGS RSIL.

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants **Samples Received:** 5/16/2018 **Report Updated:** 8/10/2018

CDA #	Commiss ID	\$180 NO December 0/	S15N NO Provide 0/
SM #	Sample ID	δ ¹⁸ O-NO₃ Results ‰	δ ¹⁵ N-NO₃ Results ‰
SM-8E16001	GW-C-BK-05_180514	5.26	9.68
SM-8E16002	GW-E-02_180514	8.71	7.89
SM-8E16003	SW-05-D_180514	13.72	22.29
SM-8E16006	SW-04-u_180514	Low Nitrate	Low Nitrate
SM-8E16007	SW-04-D_180514	Low Nitrate	Low Nitrate
SM-8E16008	SW-03-D_180514	5.06	8.92
SM-8E16009	GW-A-03_180515	3.47	6.93
SM-8E16010	GW-A-02_180515	3.8	5.85
SM-8E16012	GW-A-04_180515	3.55	5.65
SM-8E16013	GW-A-01_180515	3.44	7.35
SM-8E16016	GW-F-02_180515	6.91	8.38
SM-8E16017	GW-C-07_180515	4.86	8.96
SM-8E16018	GW-C-08_180515	4.57	8.91

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Analyses were performed and described by subcontracted USGS RSIL.

4967 SW 75th Avenue Miami, FL 33143 Phone: (1) 786-220-0379 Fax: (1) 786-513-2733

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants **Samples Received:** 5/19/2018 **Report Updated:** 8/10/2018

		619	015
SM #	Sample ID	δ ¹⁸ O-NO₃ Results ‰	δ ¹⁵ N-NO₃ Results ‰
SM-8E19001	GW-B-03_180516	2.19	5.39
SM-8E19002	SW-01-D_180516	Low Nitrate	Low Nitrate
SM-8E19003	GW-B-04_180516	2.93	6.35
SM-8E19004	SW-03-u_180516	4.13	7.84
SM-8E19006	SW-02-u_180516	Low Nitrate	Low Nitrate
SM-8E19007	GW-A-07_180516	3.93	7.73
SM-8E19008	GW-C-BK-06_180517	13.05	22.68
SM-8E19009	GW-D-07_180517	-0.05	9.95
SM-8E19010	GW-G-01_180517	8.51	7.38
SM-8E19011	GW-D-04_180517	3.43	9.32
SM-8E19014	GW-D-05_180517	2.88	0.66
SM-8E19015	GW-E-03_180517	5.14	6.23
SM-8E19016	GW-G-02_180518	3.38	10.86

Rationale:

Nutrient source tracking is a method used to determine the sources of nutrient pollution in the environment. Knowing the source of the pollution is important for effective remediation. Nitrogen isotopes are effective tracers of nutrient source identification. Different sources of nutrients have distinctive isotope ratios and these serve as unique markers in order to trace them.

Method

Nitrate samples are analyzed by bacterial conversion of nitrate to nitrous oxide and subsequent measurement on a continuous flow isotope ratio mass spectrometer (Sigman and others, 2001; Casciotti and others, 2002; Coplen and others, 2004; Revesz and Casciotti, 2007).

Fax: (1) 786-513-2733

Nitrogen Source Tracking

Determination of Nitrogen and Oxygen Isotopic Ratios of Nitrate by Isotope-Ratio
Mass Spectrometry

Submitter: Geosyntec Consultants

Reporting of Nitrogen Isotope Ratios

Nitrogen isotope ratios are reported in parts per thousand (per mill) relative to N2 in air (Mariotti, 1983). The nitrogen isotopic compositions of nitrogen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples, are in accord with Böhlke and Coplen (1995) and Böhlke and others (2003):

N2 in air		0 (exactly)
IAEA-NO-3	KNO3	+4.72
USGS32	KNO3	+180 (exactly)
USGS34	KNO3	-1.8
USGS35	NaNO3	+2.7

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of nitrogen isotopic results is 0.5 per mill, unless otherwise indicated. This means that if the same sample were resubmitted for isotopic analysis, the newly measured value would lie within the uncertainty bounds 95 percent of the time. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Users should be aware that atmospheric nitrate is enriched in O-17 by mass-independent processes (Michalski and Thiemens, 2000; Galanter and others, 2000) and that this bacterial method for nitrate isotope measurements may overestimate the nitrogen isotope ratio of atmospheric nitrate samples by as much as 1 to 2 per mil (Sigman and others et al., 2001). For samples that users suspect may contain more than about 20 percent atmospheric nitrate, users should contact the Reston Stable Isotope Laboratory about methods to resolve this problem. Methods are currently being developed to quantify the mass-independent O-17/O-16 enrichment, and this independent oxygen isotope ratio may be of use in investigating processes forming nitrate.

Oxygen Isotope Ratios

Oxygen isotope ratios are reported in per mil relative to VSMOW reference water and normalized on a scale such that SLAP reference water is -55.5 per mil (Coplen, 1988; Coplen, 1994). The oxygen isotopic compositions of oxygen-bearing internationally distributed isotopic reference materials, had they been analyzed in this laboratory with your samples are:

VSMOW	water	0 (exactly)
SLAP	water -5	5.5 (exactly)
IAEA-NO-3	KNO3	+25.6
USGS32	KNO3	+25.7
USGS34	KNO3	-27.9
USGS35	NaNO3	+57.5

For samples with nitrate concentrations of at least 0.06 mg/kg as N, the 2-sigma uncertainty of oxygen isotopic results of nitrates is 1.0 per mil unless otherwise indicated. The uncertainty for nitrate samples with concentrations less than 0.06 mg/kg as N is twice that indicated above.

Analyses were performed and described by subcontracted USGS RSIL.

Fax: (1) 786-513-2733

References

Böhlke, J.K., and Coplen, T.B., 1995, Interlaboratory comparison of secondary reference materials for nitrogen-isotope-ratio measurements, in Reference and intercomparison materials for stable isotopes of light elements: Vienna, Austria, International Atomic Energy Agency, IAEA-TECDOC-825, p. 51-66.

Böhlke, J.K., Mroczkowski, S.J., and Coplen, T.B., 2003, Oxygen isotopes in nitrate: New reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration: Rapid Communications in Mass Spectrometry, v. 17, p. 1835-1846.

Casciotti, K.L., Sigman, D.M., Galanter Hastings, M., Böhlke, J.K., and Hilkert, A., 2002, Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method: Analytical Chemistry, v. 74, p. 4905-4912.

Coplen, T. B., 1988. Normalization of Oxygen and Hydrogen Isotope Data, Chemical Geology (Isotope Geoscience Section), v.72, p. 293-297.

Coplen, T. B., 1994. Reporting of Stable Hydrogen, Carbon, and Oxygen Isotopic Abundances, Pure and Applied Chemistry, v. 66, p. 273-276. http://media.iupac.org/publications/pac/1994/pdf/6602x0273.pdf

Coplen, T.B., Böhlke, J.K., and Casciotti, K., 2004, Using dual-bacterial denitrification to improve delta 15N determinations of nitrates containing mass-independent 17O: Rapid Communications in Mass Spectrometry, v. 18, p. 245-250.

Galanter, M., Sigman, D. M., Levy, H., Böhlke, J. K., Lipshultz, F., and Steig, E., 2000, Controls on the oxygen isotopic composition of atmospherically-derived nitrate (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F191.

Mariotti, A., 1983, Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements: Nature, v. 303, p. 685-687.

Michalski, G., and Thiemens, M. H., 2000, Mass independent fractionation in nitrate aerosols (abstract): EOS, Transactions of the American Geophysical Union, v. 81, p. F120.

Revesz, Kinga, and Casciatti, Karen, 2007, Determination fo the delta (15N/14N) and delta (18O/16O) of nitrates in water: RSIL Lab Code 2900, chap. C17 of Révész, Kinga, and Coplen, Tyler B., eds., Methods of the Reston Stable Isotope Laboratory: Reston, Virginia, U.S. Geological Survey, Techniques and Methods, book 10, sec. C, chap. 17, 24 p. http://pubs.water.usgs.gov/tm10C17/

Sigman, D.M., Casciotti, K.L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J.K., 2001, A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater: Analytical Chemistry, v. 73, p. 4145-4153.

FINAL REPORT

Work Orders: 7H28063 **Report Date:** 11/10/2017

Received Date: 8/28/2017

Turnaround Time: Normal

Phones: (805) 979-9129

Fax: (805) 899-8689

P.O. #:

Billing Code:

Attn: Jared Ervin

Client: Geosyntec Consultants - Santa Barbara

924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project: VCEHD OWTS Study (LA0391)

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jared Ervin,

Enclosed are the results of analyses for samples received 8/28/17 with the Chain-of-Custody document. The samples were received in good condition, at 3.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Brandon Gee

Operations Manager/Senior PM



FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/10/2017 12:18

Project Manager: Jared Ervin

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
GW-B-04-170823	Reese Wilson	7H28063-01	Water	08/23/17 12:45	
GW-C-01-170823	Reese Wilson	7H28063-02	Water	08/23/17 14:50	
GW-F-02-170823	Reese Wilson	7H28063-03	Water	08/23/17 15:50	
GW-A-07-170824	Reese Wilson	7H28063-04	Water	08/24/17 09:20	
GW-A-03-170824	Reese Wilson	7H28063-05	Water	08/24/17 10:25	
GW-A-02-170824	Reese Wilson	7H28063-06	Water	08/24/17 11:00	
GW-A-04-170824	Reese Wilson	7H28063-07	Water	08/24/17 11:40	
GW-C-BK-05-170825	Reese Wilson	7H28063-08	Water	08/25/17 10:20	
GW-C-BK-05-170825-EB	Reese Wilson	7H28063-09	Water	08/25/17 11:00	
SW-03-D-170825	Reese Wilson	7H28063-10	Water	08/25/17 15:00	

10/20/17 19:15

10/13/17 23:03

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

TDCPP

Trimethoprim

GW-B-04-170823 Sample: Sampled: 08/23/17 12:45 by Reese Wilson 7H28063-01 (Water) Result MDL MRL Units Analyzed Qualifier Analyte PPCPs - Pharmaceuticals by LC/MSMS-ESI+ Batch ID: W7J1075 Method: EPA 1694M-ESI+ Prepared: 09/20/17 07:45 Analyst: kan ND 1.4 20 10/13/17 23:03 Acetaminophen ng/l Amoxicillin ND 2.0 10 ng/l 1 10/13/17 23:03 10/13/17 23:03 Atenolol ND 0.20 1.0 ng/l 10/13/17 23:03 Atorvastatin ND 0.11 1.0 ng/l 1 2.2 10 10/20/17 19:15 Azithromycin ng/l Caffeine 10/13/17 23:03 5.6 0.31 1.0 ng/l 1 Carbamazepine ND 0.080 1.0 ng/l 10/13/17 23:03 Ciprofloxacin 2.7 1.4 5.0 ng/l 1 10/20/17 19:15 Cotinine ND 0.59 2.0 1 10/13/17 23:03 ng/l DEET 0.060 1.0 10/13/17 23:03 na/l 1 Diazepam ND 0.14 1.0 10/13/17 23:03 ng/l 0.080 1.0 10/13/17 23:03 Fluoxetine 0.17 ng/l 10/13/17 23:03 Meprobamate ND 0.36 1.0 ng/l 1 0.040 10/13/17 23:03 Methadone ND 1.0 ng/l Phenytoin (Dilantin) ND 0.33 1.0 1 10/20/17 19:15 ng/l 10/13/17 23:03 Primidone 0.60 1.0 ng/l 5.0 5.0 10/20/17 19:15 Sucralose 6.4 ng/l 1 0.19 1.0 10/13/17 23:03 Sulfamethoxazole ng/l **TCEP** 0.34 1.0 10/20/17 19:15 0.88 1 ng/l **TCPP** ND 0.27 1.0 ng/l 1 10/20/17 19:15

0.72

0.47

0.24

1.0

1.0

ng/l

ng/l

1

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

								(Continuou)
Sample:	GW-C-01-170823					Sampled	: 08/23/17 14:50 by	Reese Wilson
	7H28063-02 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phari	maceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kar
Acetamin	ophen	ND	1.4	20	ng/l	1	10/13/17 23:36	
Amoxicilli	n	ND	2.0	10	ng/l	1	10/13/17 23:36	
Atenolol		ND	0.20	1.0	ng/l	1	10/13/17 23:36	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/13/17 23:36	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 19:31	
Caffeine		2.2	0.31	1.0	ng/l	1	10/13/17 23:36	
Carbama	zepine	ND	0.080	1.0	ng/l	1	10/13/17 23:36	
Ciproflox	acin	3.6	1.4	5.0	ng/l	1	10/20/17 19:31	,
Cotinine		ND	0.59	2.0	ng/l	1	10/13/17 23:36	
DEET -		1.4	0.060	1.0	ng/l	1	10/13/17 23:36	
Diazepam	1	ND	0.14	1.0	ng/l	1	10/13/17 23:36	
Fluoxetine	8	ND	0.080	1.0	ng/l	1	10/13/17 23:36	
Meprobar	mate	ND	0.36	1.0	ng/l	1	10/13/17 23:36	
Methador	ne	ND	0.040	1.0	ng/l	1	10/13/17 23:36	
Phenytoi	n (Dilantin)	0.49	0.33	1.0	ng/l	1	10/20/17 19:31	
Primidone)	ND	0.60	1.0	ng/l	1	10/13/17 23:36	
Sucralose)	ND	5.0	5.0	ng/l	1	10/20/17 19:31	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/13/17 23:36	
TCEP		ND	0.34	1.0	ng/l	1	10/20/17 19:31	
TCPP -		ND	0.27	1.0	ng/l	1	10/20/17 19:31	
TDCPP			0.47	1.0	ng/l	1	10/20/17 19:31	
		2			· ·	•		,
Trimetho	prim	0.26	0.24	1.0	ng/l	1	10/13/17 23:36	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

(Continued)

11/10/2017 12:18

Sample Results

Sample:	GW-F-02-170823					Sampled	: 08/23/17 15:50 by	Reese Wilson
	7H28063-03 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phari	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2				Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	10/13/17 23:52	
Amoxicilli	n	ND	2.0	10	ng/l	1	10/13/17 23:52	
Atenolol		ND	0.20	1.0	ng/l	1	10/13/17 23:52	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/13/17 23:52	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 19:48	
Caffeine		59	0.31	1.0	ng/l	1	10/13/17 23:52	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	10/13/17 23:52	
Ciproflox	acin	2.2	1.4	5.0	ng/l	1	10/20/17 19:48	J
Cotinine		ND	0.59	2.0	ng/l	1	10/13/17 23:52	
DEET -		2.1	0.060	1.0	ng/l	1	10/13/17 23:52	
Diazepam	1	ND	0.14	1.0	ng/l	1	10/13/17 23:52	
Fluoxetine	e	ND	0.080	1.0	ng/l	1	10/13/17 23:52	
Meprobar	mate	ND	0.36	1.0	ng/l	1	10/13/17 23:52	
Methadon	ne	ND	0.040	1.0	ng/l	1	10/13/17 23:52	
Phenytoin	n (Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 19:48	
Primidone	9	ND	0.60	1.0	ng/l	1	10/13/17 23:52	
Sucralose	e		5.0	5.0	ng/l	1	10/20/17 19:48	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/13/17 23:52	
TCEP -		3.2	0.34	1.0	ng/l	1	10/20/17 19:48	
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 19:48	
TDCPP		8.0	0.47	1.0	ng/l	1	10/20/17 19:48	
Trimethop	orim	ND	0.24	1.0	ng/l	1	10/13/17 23:52	
•					•			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

Sample:	GW-A-07-170824					Sampled	d: 08/24/17 9:20 by	Reese Wilson
	7H28063-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phari	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2				Analyst: kan
Acetamin			1.4	20	ng/l	1	10/14/17 00:25	
Amoxicilli	n	ND	2.0	10	ng/l	1	10/14/17 00:25	
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 00:25	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/14/17 00:25	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 20:04	
Caffeine		1.6	0.31	1.0	ng/l	1	10/14/17 00:25	
Carbama	zepine	ND	0.080	1.0	ng/l	1	10/14/17 00:25	
Ciprofloxa	acin	ND	1.4	5.0	ng/l	1	10/20/17 20:04	
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 00:25	
DEET -		2.3	0.060	1.0	ng/l	1	10/14/17 00:25	
Diazepan	1	ND	0.14	1.0	ng/l	1	10/14/17 00:25	
Fluoxetine	e	ND	0.080	1.0	ng/l	1	10/14/17 00:25	
Meprobar	mate	ND	0.36	1.0	ng/l	1	10/14/17 00:25	
Methador	ne	ND	0.040	1.0	ng/l	1	10/14/17 00:25	
Phenytoir	n (Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 20:04	
Primidone		ND	0.60	1.0	ng/l	1	10/14/17 00:25	
Sucralose	:	ND	5.0	5.0	ng/l	1	10/20/17 20:04	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 00:25	
TCEP -		0.52	0.34	1.0	ng/l	1	10/20/17 20:04	J
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 20:04	
TDCPP		ND	0.47	1.0	ng/l	1	10/20/17 20:04	
Trimethor	prim	ND	0.24	1.0	ng/l	1	10/14/17 00:25	
					•			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

Sample:	GW-A-03-170824					Sampled	: 08/24/17 10:25 by	Reese Wilson
	7H28063-05 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phar	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	10/14/17 00:42	
Amoxicilli	n	ND	2.0	10	ng/l	1	10/14/17 00:42	
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 00:42	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/14/17 00:42	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 20:21	
Caffeine		1.2	0.31	1.0	ng/l	1	10/14/17 00:42	
Carbama	zepine	ND	0.080	1.0	ng/l	1	10/14/17 00:42	
Ciproflox	acin	1.6	1.4	5.0	ng/l	1	10/20/17 20:21	J
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 00:42	
DEET -		0.70	0.060	1.0	ng/l	1	10/14/17 00:42	J
Diazepan	1	ND	0.14	1.0	ng/l	1	10/14/17 00:42	
Fluoxetine	e		0.080	1.0	ng/l	1	10/14/17 00:42	
Meprobar	mate	ND	0.36	1.0	ng/l	1	10/14/17 00:42	
Methador	ne	ND	0.040	1.0	ng/l	1	10/14/17 00:42	
Phenytoir	n (Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 20:21	
Primidone	9	ND	0.60	1.0	ng/l	1	10/14/17 00:42	
Sucralose	9	ND	5.0	5.0	ng/l	1	10/20/17 20:21	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 00:42	
TCEP		0.36	0.34	1.0	ng/l	1	10/20/17 20:21	J
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 20:21	
TDCPP		ND	0.47	1.0	ng/l	1	10/20/17 20:21	
Trimethor	orim		0.24	1.0	ng/l	1	10/14/17 00:42	
	=:::::	115	· ·			•		

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

	ampie i recaite							(Continuca)
Sample:	GW-A-02-170824					Sampled	: 08/24/17 11:00 by	Reese Wilson
	7H28063-06 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
CPs - Pharr	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kar
Acetamino	ophen	ND	1.4	20	ng/l	1	10/14/17 01:15	
Amoxicillin	n	ND	2.0	10	ng/l	1	10/14/17 01:15	
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 01:15	
Atorvastat	tin	ND	0.11	1.0	ng/l	1	10/14/17 01:15	
Azithromy	rcin	ND	2.2	10	ng/l	1	10/20/17 20:37	
Caffeine		2.5	0.31	1.0	ng/l	1	10/14/17 01:15	
Carbamaz	zepine		0.080	1.0	ng/l	1	10/14/17 01:15	
Ciprofloxa	acin	ND	1.4	5.0	ng/l	1	10/20/17 20:37	
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 01:15	
DEET -		0.96	0.060	1.0	ng/l	1	10/14/17 01:15	,
Diazepam	1	ND	0.14	1.0	ng/l	1	10/14/17 01:15	
Fluoxetine	3	ND	0.080	1.0	ng/l	1	10/14/17 01:15	
Meproban	nate	ND	0.36	1.0	ng/l	1	10/14/17 01:15	
Methadon	l e	ND	0.040	1.0	ng/l	1	10/14/17 01:15	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 20:37	
Primidone	; ;	ND	0.60	1.0	ng/l	1	10/14/17 01:15	
Sucralose	9	5.3	5.0	5.0	ng/l	1	10/20/17 20:37	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 01:15	
TCEP -		0,38	0.34	1.0	ng/l	1	10/20/17 20:37	
TCPP			0.27	1.0	ng/l	1	10/20/17 20:37	
TDCPP			0.47	1.0	ng/l	1	10/20/17 20:37	
Trimethop		5.55	0.24	1.0	ng/l	1	10/14/17 01:15	`
memop	viiii	IND	0.24	1.0	119/1		10/17/1/01.15	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

								()
Sample:	GW-A-04-170824					Sampled	: 08/24/17 11:40 by	Reese Wilson
	7H28063-07 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharn	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kan
Acetamino	•	2	1.4	20	ng/l	1	10/14/17 01:31	
Amoxicillir	1	ND	2.0	10	ng/l	1	10/14/17 01:31	
Atenolol -		ND	0.20	1.0	ng/l	1	10/14/17 01:31	
Atorvastat	in	ND	0.11	1.0	ng/l	1	10/14/17 01:31	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 20:54	
Caffeine		1.2	0.31	1.0	ng/l	1	10/14/17 01:31	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	10/14/17 01:31	
Ciprofloxa	acin	1.7	1.4	5.0	ng/l	1	10/20/17 20:54	J
Cotinine -		ND	0.59	2.0	ng/l	1	10/14/17 01:31	
DEET -		3.4	0.060	1.0	ng/l	1	10/14/17 01:31	
Diazepam		ND	0.14	1.0	ng/l	1	10/14/17 01:31	
Fluoxetine	3	ND	0.080	1.0	ng/l	1	10/14/17 01:31	
Meprobam	nate	ND	0.36	1.0	ng/l	1	10/14/17 01:31	
Methadon	e	ND	0.040	1.0	ng/l	1	10/14/17 01:31	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 20:54	
Primidone		ND	0.60	1.0	ng/l	1	10/14/17 01:31	
Sucralose	•	8.1	5.0	5.0	ng/l	1	10/20/17 20:54	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	10/14/17 01:31	
TCEP -		0.35	0.34	1.0	ng/l	1	10/20/17 20:54	J
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 20:54	
TDCPP		0.47	0.47	1.0	ng/l	1	10/20/17 20:54	J
Trimethop	rim	ND	0.24	1.0	ng/l	1	10/14/17 01:31	
					•			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

Gample res	uito							(Continued)
Sample: GW-C-BK-05-17	'0825					Sampled	: 08/25/17 10:20 by	Reese Wilson
7H28063-08 (W	ater)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharmaceuticals by LC/M	SMS-ESI+							
Method: EPA 1694M-ESI+		Batch ID: W7J1075		Prepared: 09/	20/17 07:45			Analyst: kan
Acetaminophen		ND	1.4	20	ng/l	1	10/14/17 02:04	
Amoxicillin		ND	2.0	10	ng/l	1	10/14/17 02:04	
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 02:04	
Atorvastatin		ND	0.11	1.0	ng/l	1	10/14/17 02:04	
Azithromycin		ND	2.2	10	ng/l	1	10/20/17 21:10	
Caffeine		2.5	0.31	1.0	ng/l	1	10/14/17 02:04	
Carbamazepine		ND	0.080	1.0	ng/l	1	10/14/17 02:04	
Ciprofloxacin		1.7	1.4	5.0	ng/l	1	10/20/17 21:10	J
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 02:04	
DEET		1.8	0.060	1.0	ng/l	1	10/14/17 02:04	
Diazepam		ND	0.14	1.0	ng/l	1	10/14/17 02:04	
Fluoxetine		ND	0.080	1.0	ng/l	1	10/14/17 02:04	
Meprobamate		ND	0.36	1.0	ng/l	1	10/14/17 02:04	
Methadone		ND	0.040	1.0	ng/l	1	10/14/17 02:04	
Phenytoin (Dilantin)		ND	0.33	1.0	ng/l	1	10/20/17 21:10	
Primidone		ND	0.60	1.0	ng/l	1	10/14/17 02:04	
Sucralose		ND	5.0	5.0	ng/l	1	10/20/17 21:10	
Sulfamethoxazole		ND	0.19	1.0	ng/l	1	10/14/17 02:04	
TCEP		0.46	0.34	1.0	ng/l	1	10/20/17 21:10	J
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 21:10	
TDCPP		2.7	0.47	1.0	ng/l	1	10/20/17 21:10	
		ND	0.24	1.0	ng/l	1	10/14/17 02:04	
europiiiii		IND	V. <u>~</u> .	1.0	''9''	•	.5, 1 1, 17 52.04	

Santa Barbara, CA 93101

Certificate of Analysis

FINAL REPORT

Geosyntec Consultants - Santa Barbara Project Number 924 Anacapa Street, Ste 4A

Project Number: VCEHD OWTS Study (LA0391)

Reported:

11/10/2017 12:18

Sample Results

(Continued)

30	ample Mesuits							(Continued)
Sample:	GW-C-BK-05-170825-EB					Sampled	: 08/25/17 11:00 by	Reese Wilson
	7H28063-09 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phari	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	10/14/17 02:21	
Amoxicilli	n	ND	2.0	10	ng/l	1	10/14/17 02:21	
Atenolol		4.2	0.20	1.0	ng/l	1	10/14/17 02:21	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/14/17 02:21	
Azithromy	cin	ND	2.2	10	ng/l	1	10/20/17 21:27	
Caffeine		2.0	0.31	1.0	ng/l	1	10/14/17 02:21	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	10/14/17 02:21	
Ciproflox	acin	3.5	1.4	5.0	ng/l	1	10/20/17 21:27	J
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 02:21	
DEET -		0.94	0.060	1.0	ng/l	1	10/14/17 02:21	J
Diazepam	1	ND	0.14	1.0	ng/l	1	10/14/17 02:21	
Fluoxetine	e	ND	0.080	1.0	ng/l	1	10/14/17 02:21	
Meproban	mate	ND	0.36	1.0	ng/l	1	10/14/17 02:21	
Methadon	ne	ND	0.040	1.0	ng/l	1	10/14/17 02:21	
Phenytoin	n (Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 21:27	
Primidone	3	ND	0.60	1.0	ng/l	1	10/14/17 02:21	
Sucralose	3	ND	5.0	5.0	ng/l	1	10/20/17 21:27	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 02:21	
TCEP -		0.75	0.34	1.0	ng/l	1	10/20/17 21:27	J
TCPP		ND	0.27	1.0	ng/l	1	10/20/17 21:27	
TDCPP			0.47	1.0	ng/l	1	10/20/17 21:27	
Trimethop		·· -	0.24	1.0	ng/l	1	10/14/17 02:21	
типсиюр	211111	IND	0.24	1.0	119/1		10/17/11 02.21	

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

Sample Results

	ampio i todalto						'	(Continuca)
Sample:	SW-03-D-170825					Sampled	: 08/25/17 15:00 by	Reese Wilson
	7H28063-10 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J1075		Prepared: 09/2	20/17 07:45			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	10/14/17 03:27	
Amoxicill	lin	2.2	2.0	10	ng/l	1	10/14/17 03:27	J
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 03:27	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/14/17 03:27	
Azithrom	ycin	5.8	2.2	10	ng/l	1	10/20/17 22:33	J
Caffeine		2.6	0.31	1.0	ng/l	1	10/14/17 03:27	
Carbama	zepine	ND	0.080	1.0	ng/l	1	10/14/17 03:27	
Ciproflox	acin	11	1.4	5.0	ng/l	1	10/20/17 22:33	В
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 03:27	
DEET -		1.4	0.060	1.0	ng/l	1	10/14/17 03:27	
Diazepan	1	0.16	0.14	1.0	ng/l	1	10/14/17 03:27	J
Fluoxetin	le	0.57	0.080	1.0	ng/l	1	10/14/17 03:27	J
Meprobar	mate	ND	0.36	1.0	ng/l	1	10/14/17 03:27	
Methadoi	1e	0.62	0.040	1.0	ng/l	1	10/14/17 03:27	J
Phenytoir	n (Dilantin)	ND	0.33	1.0	ng/l	1	10/20/17 22:33	
Primidone)	ND	0.60	1.0	ng/l	1	10/14/17 03:27	
Sucralose	3	ND	5.0	5.0	ng/l	1	10/20/17 22:33	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 03:27	
TCEP		ND	0.34	1.0	ng/l	1	10/20/17 22:33	
			0.27	1.0	ng/l	1	10/20/17 22:33	
			0.47	1.0	ng/l	1	10/20/17 22:33	
Trimetho			0.47	1.0	ng/l	1	10/20/17 22:33	
minetho	γιιιιι	1.0	0.24	1.0	rig/i	'	10/14/1/ 03.2/	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

PPCPs - Pharmaceuticals by LC/MSMS-ESI+										
				Spike	Source		%REC		RPD	
Analyte Resu	ilt MDL	. MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7J1075 - EPA 1694M-ESI+										
Blank (W7J1075-BLK1) Acetaminophen N	D 1.4	20	Pre ng/l	epared: 09/20/1	7 Analyzed:	10/13/1	7			
Atenolol			ng/l							
Caffeine 0.95			ng/l							
Carbamazepine N			ng/l							
Cotinine N			ng/l							
Primidone N			ng/l							
rimidone	0.00	1.0	Tig/i							
Blank (W7J1075-BLK2) Azithromycin	D 2.2	10		epared: 09/20/1	7 Analyzed:	10/20/1	7			00
Azithromycin	D 2.2	10	ng/l							QC
CS (W7J1075-BS1) Acetaminophen 22	0 44	200		epared: 09/20/1	7 Analyzed:					
7.155.03.1111.05.11.11			ng/l	200		114	66-156			
Amoxicillin			ng/l	100		111	14-167			
Atenolol 11			ng/l	10.0		113	56-164			
Atorvastatin 6.7			ng/l	10.0		68	0.1-173			
Caffeine 12			ng/l	10.0		127	55-152			
Carbamazepine 12		0 1.0	ng/l	10.0		127	60-135			
Cotinine 12	.1 0.59	2.0	ng/l	10.0		121	68-155			
DEET	.5 0.060	0 1.0	ng/l	10.0		125	45-135			
Diazepam 11		1.0	ng/l	10.0		115	58-127			
Fluoxetine 12	.3 0.080	0 1.0	ng/l	10.0		123	55-150			
Meprobamate 20	.5 0.36	1.0	ng/l	10.0		205	11-166			BS
Methadone 12	.5 0.040	0 1.0	ng/l	10.0		125	62-137			
Primidone 11	.4 0.60	1.0	ng/l	10.0		114	54-147			
Sulfamethoxazole 12	.8 0.19	1.0	ng/l	10.0		128	60-133			
Trimethoprim 10	.3 0.24	1.0	ng/l	10.0		103	67-139			
.CS (W7J1075-BS2)			Pre	epared: 09/20/1	7 Analyzed:	10/20/1	7			
Azithromycin 11	6 2.2	10	ng/l	100		116	52-166			QC
Ciprofloxacin 54	.3 1.4	5.0	ng/l	50.0		109	51-168			QC
Phenytoin (Dilantin)	.0 0.33	1.0	ng/l	10.0		130	69-138			QC
TCEP	0.34	1.0	ng/l	10.0		79	25-149			QC
TCPP	0.27	1.0	ng/l	10.0		30	24-149			QC
TDCPP 8.8	0.47	1.0	ng/l	10.0		88	20-158			QC
.CS Dup (W7J1075-BSD1)			Dra	epared: 09/20/1	7 Analyzed:	10/13/1	7			
Acetaminophen 23	6 1.4	20	ng/l	200	. Allalyzed:	118	66-156	3	30	
Amoxicillin	2.0	10	ng/l	100		120	14-167	8	30	
Atenolol 10	.7 0.20	1.0	ng/l	10.0		107	56-164	5	30	
Atorvastatin	.7 0.11	1.0	ng/l	10.0		737	0.1-173	166	30	BS-0
Caffeine	.1 0.31	1.0	ng/l	10.0		131	55-152	3	30	
128063			J							Page 13 o

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported:

11/10/2017 12:18

Quality Control Results

(Continued)

										`	
PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)											
					Spike	Source		%REC		RPD	
Analyte Res	sult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7J1075 - EPA 1694M-ESI+ (Continued)											
LCS Dup (W7J1075-BSD1)				Pre	pared: 09/20/1	7 Analyzed:	10/13/17	7			
Carbamazepine 12	2.1	0.080	1.0	ng/l	10.0		121	60-135	5	30	
Cotinine	1.0	0.59	2.0	ng/l	10.0		110	68-155	10	30	
DEET	9.9	0.060	1.0	ng/l	10.0		199	45-135	46	30	BS-0
Diazepam11	1.0	0.14	1.0	ng/l	10.0		110	58-127	4	30	
Fluoxetine 9.	.87	0.080	1.0	ng/l	10.0		99	55-150	22	30	
Meprobamate 2	1.4	0.36	1.0	ng/l	10.0		214	11-166	4	30	BS
Methadone 11	1.3	0.040	1.0	ng/l	10.0		113	62-137	10	30	
Primidone 14	4.3	0.60	1.0	ng/l	10.0		143	54-147	23	30	
Sulfamethoxazole 11	1.2	0.19	1.0	ng/l	10.0		112	60-133	13	30	
Trimethoprim 11	1.1	0.24	1.0	ng/l	10.0		111	67-139	7	30	
.CS Dup (W7J1075-BSD2)				Pre	pared: 09/20/1	17 Analyzed:	10/20/17	7			
Azithromycin 1	115	2.2	10	ng/l	100	•	115	52-166	0.9	30	QC
Ciprofloxacin 60	0.1	1.4	5.0	ng/l	50.0		120	51-168	10	30	QC
Phenytoin (Dilantin) 9.	.81	0.33	1.0	ng/l	10.0		98	69-138	28	30	QC
TCEP 6.	.53	0.34	1.0	ng/l	10.0		65	25-149	19	30	QC
TCPP 2.	.97	0.27	1.0	ng/l	10.0		30	24-149	2	30	QC
TDCPP10	0.2	0.47	1.0	ng/l	10.0		102	20-158	15	30	QC

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/10/2017 12:18

ltem

Notes and Definitions

В	Blank contamination. The analyte was found in the associated blank as well as in the sample.
BS-04	The recovery of this analyte in LCS or LCSD was outside control limit. Sample was accepted based on the remaining LCS, LCSD or LCS-LL.
BS-H	The recovery of this analyte in the BS/LCS was over the control limit. Sample result is suspect.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
QC-2	This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal

standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

COC version 042707	Civentifica			klahs com	E PRIOR	ES WILL TAK	ED RUSH REQUE	PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY OVER UNSCHEDULED RUSH REQUESTS WWW.Wed
(OT = Other Matrix	FORMATION	A LING N	SEECIAL BEOLIBEMENTS / BILLING INFORMATION		r	3		1 CENT
SW = Solid Waste	2001 1322	mamo		D 200 17 10	D	12 / 1/W	/)	
tLab YN SO = Soil	Preserved at Lab	увα	2 RECEIVED BY	DATE/TIME) スク	DAT	- 	BY	REINOUISHED BY
resent	1 <i>र</i>	re or	0 1 too	82817 11:30	82	FH7	157	Kerna 1
S S	B-28-37 1130 Received On Ice		RECEIVED BY	DATE / TIME	DAT	į	ВҮ	RELINQUISHED BY
ء دن ک	S PORTE EHD	14		5141 458	- 32	CF C	MIN	BEESE WILGIN
SAMPLE CONDITION: SAMPLE TYPE CODE:	SAMPL	YB C	RECEIVED BY	DATE / TIME	DAT		₽₩ ,	RELINQUISHED BY
								· ·
		۲ ۲	₹0825	10 5W-03-D-170825	AQ.	1500	\	
		×	70825-EB	BN-C-BK05-170825-EB	AR	N:00		
		رم ×	5280415	GW-C-BK-05_170925	λQ	10:20	4/25/13	
		7 7	-170824	GW-A-04-170824	λQ	11:40	(
		χ	170824	GW-A-02_170824	A	00:11		
		2 X	170824	GW-A-03_170824	AQ	10:25		
		×	170824	GW-K-07_170824	\$	09:20	8/24/17	
		7	_170823	GW-F-02_170823	ρQ	15:50	<-	
		X	5280t1-	GW-6-01	AQ	14:50		
		N X	-170813	GW-13-04-170823	ΑQ	1245	t1/2018	
Method of Shipment:		CONT. PPC	ON/SITE LOCATION	SAMPLE IDENTIFICATION/SITE LOCATION	SMPL TYPE	TIME SAMPLED	DATE SAMPLED	ID# (For lab Use Only)
Charges will apply for weekends/holidays		Ps by	ion	SAMPLER: Reese Wilson			t: Jared Ervin	PROJECT MANAGER: Jared Ervin
10 - 15 Business Days							370	Salita Balbala, CA 95 10
4 - 5 Lay Rush 50% Rush Extractions 50%			Jervin@Geosvntec.com	FAX: EMAIL: Jervin@			uite 4A 93101	924 Anacapa St., Suite 4A
48-72 Hour Rush 75%	-	94-E	Jared Ervin: 805-979-9129	ΪË				ADDRESS:
24 Hour Rush 100%		SI+						
SPECIAL HANDLING	ANALYSES REQUESTED	T	/TS Study (LA0391)	PROJECT: VCEHD OWTS Study (LA0391)			/ntec	CLIENT NAME: Geosyntec
ł	STANDARD 11-128063		i	weckla	2A 917	ndustry : 1 6-336-263	Avenue : Ir	14859 East Clark Avenue : Industry : CA 91745 : Tel 626-336-2139 ◆ Fax 626-336-2634 ◆ www.
		INC.	Weck Laboratories, Inc.	Weck L				V V
OF CUSTODY RECORD	CHAIN OF CUST	*						\

FINAL REPORT

Work Orders: 7122107 Report Date: 11/29/2017

Received Date: 9/22/2017

Turnaround Time: Normal

Phones: (805) 979-9129

Fax: (805) 899-8689

P.O. #:

Billing Code:

Project: VCEHD OWTS Study (LA0391)

Attn: Jared Ervin

Client: Geosyntec Consultants - Santa Barbara

924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-OR #4047 • NJ-DEP #CA015

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jared Ervin,

Enclosed are the results of analyses for samples received 9/22/17 with the Chain-of-Custody document. The samples were received in good condition, at 3.2 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Brandon Gee

Operations Manager/Senior PM

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/29/2017 12:44

Project Manager: Jared Ervin

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifiers
GW-D-04_170918	R. Lustig/ R. Wilson	7122107-01	Water	09/18/17 10:18	
GW-D-05_170918	R. Lustig/ R. Wilson	7122107-02	Water	09/18/17 11:50	
GW-A-01_170918	R. Lustig/ R. Wilson	7122107-03	Water	09/18/17 14:25	
GW-C-BK-06_170919	R. Lustig/ R. Wilson	7122107-04	Water	09/19/17 10:00	
GW-D-07_170919	R. Lustig/ R. Wilson	7122107-05	Water	09/19/17 10:49	
SW-03-V170919	R. Lustig/ R. Wilson	7122107-06	Water	09/19/17 12:30	
GW-C-07170919	R. Lustig/ R. Wilson	7122107-07	Water	09/19/17 13:20	
GW-C-08170919	R. Lustig/ R. Wilson	7122107-08	Water	09/19/17 13:45	
GW-C-04170919	R. Lustig/ R. Wilson	7122107-09	Water	09/19/17 14:10	
GW-B-03170920	R. Lustig/ R. Wilson	7122107-10	Water	09/20/17 09:00	
GW-G-02_170920	R. Lustig/ R. Wilson	7122107-11	Water	09/20/17 10:05	
SW-03-D_170920-EB	R. Lustig/ R. Wilson	7122107-12	Water	09/20/17 11:20	
GW-G-02_170920-EB	R. Lustig/ R. Wilson	7122107-13	Water	09/20/17 14:12	
GW-B-05_170921	Client	7122107-14	Water	09/21/17 08:30	
GW-G-01_170921	R. Lustig/ R. Wilson	7122107-15	Water	09/21/17 10:17	
GW-E-03_170921	R. Lustig/ R. Wilson	7122107-16	Water	09/21/17 13:45	
GW-E-03_170921-DUP	R. Lustig/ R. Wilson	7122107-17	Water	09/21/17 13:45	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/29/2017 12:44

Project Manager: Jared Ervin

Sample Results

Sample:	GW-D-04_170918				Sam	pled: 09/1	8/17 10:18 by R. Lus	stig/ R. Wilson
	7I22107-01 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phari	naceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J1076		Prepared: 09/	25/17 09:53			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	10/14/17 13:03	
Amoxicilli	1	ND	2.0	10	ng/l	1	10/14/17 13:03	
Atenolol		ND	0.20	1.0	ng/l	1	10/14/17 13:03	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	10/21/17 05:58	
Azithromy	cin	ND	2.2	10	ng/l	1	10/21/17 05:58	
Caffeine		0.76	0.31	1.0	ng/l	1	10/14/17 13:03	J
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	10/14/17 13:03	
Ciproflox	acin	2.2	1.4	5.0	ng/l	1	10/21/17 05:58	J
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 13:03	
DEET -		0.41	0.060	1.0	ng/l	1	10/14/17 13:03	J
Diazepam		ND	0.14	1.0	ng/l	1	10/14/17 13:03	
Fluoxetine	•	ND	0.080	1.0	ng/l	1	10/14/17 13:03	
Meproban	nate	ND	0.36	1.0	ng/l	1	10/14/17 13:03	
Methadon	e	ND	0.040	1.0	ng/l	1	10/14/17 13:03	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	10/21/17 05:58	
Primidone		ND	0.60	1.0	ng/l	1	10/14/17 13:03	
Sucralose		ND	5.0	5.0	ng/l	1	10/21/17 05:58	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	10/14/17 13:03	
TCEP		ND	0.34	1.0	ng/l	1	10/21/17 05:58	
TCPP		ND	0.27	1.0	ng/l	1	10/21/17 05:58	
TDCPP		0.82	0.47	1.0	ng/l	1	10/21/17 05:58	J
Trimethop	rim	ND	0.24	1.0	ng/l	1	10/14/17 13:03	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

(Continued)

Sample Results

Sample: GW-D-05_170918 7I22107-02 (Water)				Samı	oled: 09/1	8/17 11:50 by R. Lus	tig/ R. Wilson
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharmaceuticals by LC/MSMS-ESI+							
Method: EPA 1694M-ESI+	Batch ID: W7J1076		Prepared: 09/2				Analyst: kan
Acetaminophen	ND	1.4	20	ng/l	1	10/14/17 14:09	
Amoxicillin	ND	2.0	10	ng/l	1	10/14/17 14:09	
Atenolol	ND	0.20	1.0	ng/l	1	10/14/17 14:09	
Atorvastatin	ND	0.11	1.0	ng/l	1	10/21/17 07:04	
Azithromycin	ND	2.2	10	ng/l	1	10/21/17 07:04	
Caffeine	4.7	0.31	1.0	ng/l	1	10/14/17 14:09	
Carbamazepine	ND	0.080	1.0	ng/l	1	10/14/17 14:09	
Ciprofloxacin	ND	1.4	5.0	ng/l	1	10/21/17 07:04	
Cotinine	ND	0.59	2.0	ng/l	1	10/14/17 14:09	
DEET	1.1	0.060	1.0	ng/l	1	10/14/17 14:09	В
Diazepam	ND	0.14	1.0	ng/l	1	10/14/17 14:09	
Fluoxetine	0.91	0.080	1.0	ng/l	1	10/14/17 14:09	J
Meprobamate	ND	0.36	1.0	ng/l	1	10/14/17 14:09	
Methadone	ND	0.040	1.0	ng/l	1	10/14/17 14:09	
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l	1	10/21/17 07:04	
Primidone	ND	0.60	1.0	ng/l	1	10/14/17 14:09	
Sucralose	ND	5.0	5.0	ng/l	1	10/21/17 07:04	
Sulfamethoxazole	ND	0.19	1.0	ng/l	1	10/14/17 14:09	
TCEP · · · · · · · · · · · · · · · · · · ·	ND	0.34	1.0	ng/l	1	10/21/17 07:04	
TCPP · · · · · · · · · · · · · · · · · ·	ND	0.27	1.0	ng/l	1	10/21/17 07:04	
TDCPP	3.4	0.47	1.0	ng/l	1	10/21/17 07:04	
Trimethoprim	ND	0.24	1.0	ng/l	1	10/14/17 14:09	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

(Continued)

11/29/2017 12:44

Sample Results

Sample:	GW-A-01_170918				Samı	pled: 09/1	8/17 14:25 by R. Lus	tig/ R. Wilson
	7I22107-03 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharn	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J1076		Prepared: 09/2	25/17 09:53			Analyst: kan
Acetamino	pphen	ND	1.4	20	ng/l	1	10/14/17 14:26	
Amoxicillir	1	ND	2.0	10	ng/l	1	10/14/17 14:26	
Atenolol -		ND	0.20	1.0	ng/l	1	10/14/17 14:26	
Atorvastat	in	ND	0.11	1.0	ng/l	1	10/21/17 07:20	
Azithromy	cin	ND	2.2	10	ng/l	1	10/21/17 07:20	
Caffeine		0.77	0.31	1.0	ng/l	1	10/14/17 14:26	J
Carbamaz	epine	ND	0.080	1.0	ng/l	1	10/14/17 14:26	
Ciprofloxa	acin	3.4	1.4	5.0	ng/l	1	10/21/17 07:20	J
Cotinine -		ND	0.59	2.0	ng/l	1	10/14/17 14:26	
DEET -		1.2	0.060	1.0	ng/l	1	10/14/17 14:26	В
Diazepam		ND	0.14	1.0	ng/l	1	10/14/17 14:26	
Fluoxetine	e	0.26	0.080	1.0	ng/l	1	10/14/17 14:26	J
Meprobam	nate	ND	0.36	1.0	ng/l	1	10/14/17 14:26	
Methadon	e	ND	0.040	1.0	ng/l	1	10/14/17 14:26	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	10/21/17 07:20	
Primidone		ND	0.60	1.0	ng/l	1	10/14/17 14:26	
Sucralose		ND	5.0	5.0	ng/l	1	10/21/17 07:20	
Sulfameth	noxazole	0.53	0.19	1.0	ng/l	1	10/14/17 14:26	J
TCEP		ND	0.34	1.0	ng/l	1	10/21/17 07:20	
TCPP		ND	0.27	1.0	ng/l	1	10/21/17 07:20	
TDCPP -		ND	0.47	1.0	ng/l	1	10/21/17 07:20	
Trimethop	rim	ND	0.24	1.0	ng/l	1	10/14/17 14:26	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

3

Sample Results

Sample:	GW-C-BK-06_170919				Samı	oled: 09/1	9/17 10:00 by R. Lus	stig/ R. Wilson
	7I22107-04 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharr	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J1076		Prepared: 09/2				Analyst: kan
Acetamino	•	2	1.4	20	ng/l	1	10/14/17 14:59	
Amoxicillir		118	2.0	10	ng/l	1	10/14/17 14:59	
Atenolol -		ND	0.20	1.0	ng/l	1	10/14/17 14:59	
Atorvastat	tin	ND	0.11	1.0	ng/l	1	10/21/17 07:37	
Azithromy	cin	ND	2.2	10	ng/l	1	10/21/17 07:37	
Caffeine		1.2	0.31	1.0	ng/l	1	10/14/17 14:59	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	10/14/17 14:59	
Ciprofloxa	acin	ND	1.4	5.0	ng/l	1	10/21/17 07:37	
Cotinine		ND	0.59	2.0	ng/l	1	10/14/17 14:59	
DEET -		1.1	0.060	1.0	ng/l	1	10/14/17 14:59	В
Diazepam	1	ND	0.14	1.0	ng/l	1	10/14/17 14:59	
Fluoxetine	9	ND	0.080	1.0	ng/l	1	10/14/17 14:59	
Meproban	nate	ND	0.36	1.0	ng/l	1	10/14/17 14:59	
Methadon	ne	ND	0.040	1.0	ng/l	1	10/14/17 14:59	
Phenytoin	ı (Dilantin)	ND	0.33	1.0	ng/l	1	10/21/17 07:37	
Primidone	•	ND	0.60	1.0	ng/l	1	10/14/17 14:59	
Sucralose	•	ND	5.0	5.0	ng/l	1	10/21/17 07:37	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	10/14/17 14:59	
TCEP		ND	0.34	1.0	ng/l	1	10/21/17 07:37	
TCPP		ND	0.27	1.0	ng/l	1	10/21/17 07:37	
TDCPP -		ND	0.47	1.0	ng/l	1	10/21/17 07:37	
Trimethop	orim	ND	0.24	1.0	ng/l	1	10/14/17 14:59	

FINAL REPORT

Project Number: VCEHD OWTS Study (LA0391)

Reported:

11/29/2017 12:44

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Manager: Jared Ervin

Sample Results

Sample: GW-D-07_170919				Samp	oled: 09/1	9/17 10:49 by R. Lus	stig/ R. Wilson
7I22107-05 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharmaceuticals by LC/MSMS-ESI+							
Method: EPA 1694M-ESI+	Batch ID: W7J1076		Prepared: 09/2				Analyst: kan
, 1001aniniophion	ND	1.4	20	ng/l	1	10/14/17 15:15	
Amoxicillin	ND	2.0	10	ng/l	1	10/14/17 15:15	
Atenolol	ND	0.20	1.0	ng/l	1	10/14/17 15:15	
Atorvastatin	ND	0.11	1.0	ng/l	1	10/21/17 07:53	
Azithromycin	ND	2.2	10	ng/l	1	10/21/17 07:53	
Caffeine	0.94	0.31	1.0	ng/l	1	10/14/17 15:15	J
Carbamazepine	ND	0.080	1.0	ng/l	1	10/14/17 15:15	
Ciprofloxacin	ND	1.4	5.0	ng/l	1	10/21/17 07:53	
Cotinine	ND	0.59	2.0	ng/l	1	10/14/17 15:15	
DEET	0.83	0.060	1.0	ng/l	1	10/14/17 15:15	J
Diazepam	ND	0.14	1.0	ng/l	1	10/14/17 15:15	
Fluoxetine	ND	0.080	1.0	ng/l	1	10/14/17 15:15	
Meprobamate	ND	0.36	1.0	ng/l	1	10/14/17 15:15	
Methadone	ND	0.040	1.0	ng/l	1	10/14/17 15:15	
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l	1	10/21/17 07:53	
Primidone	ND	0.60	1.0	ng/l	1	10/14/17 15:15	
Sucralose	ND	5.0	5.0	ng/l	1	10/21/17 07:53	
Sulfamethoxazole	ND	0.19	1.0	ng/l	1	10/14/17 15:15	
TCEP	ND	0.34	1.0	ng/l	1	10/21/17 07:53	
TCPP	ND	0.27	1.0	ng/l	1	10/21/17 07:53	
TDCPP	ND	0.47	1.0	ng/l	1	10/21/17 07:53	
Trimethoprim	ND	0.24	1.0	ng/l	1	10/14/17 15:15	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Reported:

11/29/2017 12:44

(Continued)

Sample Results

Project Manager: Jared Ervin

mple: SW-03-V-_170919 Sampled: 09/19/17 12:30 by R. Lustig/ R. Wilson

Sample: SW-03-V170919				Sam	pled: 09/1	9/17 12:30 by R. Lus	stig/ R. Wilson
7I22107-06 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharmaceuticals by LC/MSMS-ESI+							
Method: EPA 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: kan
Acetaminophen	ND	1.4	20	ng/l	1	11/17/17 22:37	
Amoxicillin	ND	2.0	10	ng/l	1	11/17/17 22:37	
Atenolol	ND	0.20	1.0	ng/l	1	11/17/17 22:37	
Atorvastatin	ND	0.11	1.0	ng/l	1	11/17/17 22:37	
Azithromycin	ND	2.2	10	ng/l	1	11/17/17 22:37	
Caffeine	5.6	0.31	1.0	ng/l	1	11/17/17 22:37	В
Carbamazepine	ND	0.080	1.0	ng/l	1	11/17/17 22:37	
Ciprofloxacin	8.0	1.4	5.0	ng/l	1	11/17/17 22:37	В
Cotinine	ND	0.59	2.0	ng/l	1	11/17/17 22:37	
DEET	0.67	0.060	1.0	ng/l	1	11/17/17 22:37	J
Diazepam	0.14	0.14	1.0	ng/l	1	11/17/17 22:37	J
Fluoxetine	ND	0.080	1.0	ng/l	1	11/17/17 22:37	
Meprobamate	ND	0.36	1.0	ng/l	1	11/17/17 22:37	
Methadone	ND	0.040	1.0	ng/l	1	11/17/17 22:37	
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l	1	11/17/17 22:37	
Primidone	ND	0.60	1.0	ng/l	1	11/17/17 22:37	
Sucralose	ND	5.0	5.0	ng/l	1	11/17/17 22:37	
Sulfamethoxazole	0.87	0.19	1.0	ng/l	1	11/17/17 22:37	J
TCEP	ND	0.34	1.0	ng/l	1	11/17/17 22:37	
TCPP	3.0	0.27	1.0	ng/l	1	11/17/17 22:37	В
TDCPP		0.47	1.0	ng/l	1	11/17/17 22:37	J
	ND	0.24	1.0	ng/l	1	11/17/17 22:37	
:::::=:::=p*:::::	ing.	· ·			•	==.07	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	ampio i tocalto						'	(Oontinaca)
Sample:	GW-C-07170919				Samı	oled: 09/1	9/17 13:20 by R. Lus	stig/ R. Wilson
	7I22107-07 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
CPs - Phari	naceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/1	10/17 08:21			Analyst: kar
Acetamin	ophen	ND	1.4	20	ng/l	1	11/17/17 22:54	
Amoxicilli	١	ND	2.0	10	ng/l	1	11/17/17 22:54	
Atenolol		ND	0.20	1.0	ng/l	1	11/17/17 22:54	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	11/17/17 22:54	
Azithromy	cin	ND	2.2	10	ng/l	1	11/17/17 22:54	
Caffeine		0.73	0.31	1.0	ng/l	1	11/17/17 22:54	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	11/17/17 22:54	
Ciproflox	acin	2.9	1.4	5.0	ng/l	1	11/17/17 22:54	
Cotinine		ND	0.59	2.0	ng/l	1	11/17/17 22:54	
DEET -		0.98	0.060	1.0	ng/l	1	11/17/17 22:54	
Diazepam		ND	0.14	1.0	ng/l	1	11/17/17 22:54	
Fluoxetine	•	ND	0.080	1.0	ng/l	1	11/17/17 22:54	
Meprobar	nate	ND	0.36	1.0	ng/l	1	11/17/17 22:54	
Methadon	e	ND	0.040	1.0	ng/l	1	11/17/17 22:54	
Phenytoii	n (Dilantin)	0.34	0.33	1.0	ng/l	1	11/17/17 22:54	
Primidone		ND	0.60	1.0	ng/l	1	11/17/17 22:54	
Sucralose		ND	5.0	5.0	ng/l	1	11/17/17 22:54	
Sulfameti	noxazole	0.45	0.19	1.0	ng/l	1	11/17/17 22:54	
TCEP		ND	0.34	1.0	ng/l	1	11/17/17 22:54	
TCPP -		2.4	0.27	1.0	ng/l	1	11/17/17 22:54	
TDCPP		0.92	0.47	1.0	ng/l	1	11/17/17 22:54	
Trimethop	rim		0.24	1.0	ng/l	1	11/17/17 22:54	
		IND	U.Z-T	1.0	9/1	i	11/11/11 22.04	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	ample results						· ·	(Continued)
Sample:	GW-C-08170919				Sam	pled: 09/1	9/17 13:45 by R. Lus	stig/ R. Wilson
	7I22107-08 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
CPs - Pharn	maceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J0492	4.4	Prepared: 10/1		1	11/17/17 23:10	Analyst: kan
Acetamino	·		1.4	10	ng/l	•	11/17/17 23:10	
Amoxicillir		,,,,	2.0		ng/l	1		
Atenolol -			0.20	1.0	ng/l	1	11/17/17 23:10	
Atorvastat		2	0.11	1.0	ng/l	1	11/17/17 23:10	
Azithromy			2.2	10	ng/l	1	11/17/17 23:10	_
Caffeine		0.17	0.31	1.0	ng/l	1	11/17/17 23:10	В
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	11/17/17 23:10	
Ciproflox	acin	10	1.4	5.0	ng/l	1	11/17/17 23:10	В
Cotinine -		ND	0.59	2.0	ng/l	1	11/17/17 23:10	
DEET -		0.50	0.060	1.0	ng/l	1	11/17/17 23:10	J
Diazepam	1	ND	0.14	1.0	ng/l	1	11/17/17 23:10	
Fluoxetine	9	ND	0.080	1.0	ng/l	1	11/17/17 23:10	
Meproban	nate	ND	0.36	1.0	ng/l	1	11/17/17 23:10	
Methadon	ne	ND	0.040	1.0	ng/l	1	11/17/17 23:10	
Phenytoin	ı (Dilantin)	ND	0.33	1.0	ng/l	1	11/17/17 23:10	
Primidone	•	ND	0.60	1.0	ng/l	1	11/17/17 23:10	
Sucralose	•	ND	5.0	5.0	ng/l	1	11/17/17 23:10	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	11/17/17 23:10	
TCEP		ND	0.34	1.0	ng/l	1	11/17/17 23:10	
TCPP		ND	0.27	1.0	ng/l	1	11/17/17 23:10	
TDCPP		0.86	0.47	1.0	ng/l	1	11/17/17 23:10	J
Trimethop	orim	ND	0.24	1.0	ng/l	1	11/17/17 23:10	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/29/2017 12:44

Project Manager: Jared Ervin

Sample Results

	•							` ,
Sample:	GW-C-04170919				Samı	oled: 09/19	9/17 14:10 by R. Lus	stig/ R. Wilson
	7l22107-09 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharm	aceuticals by LC/MSMS-ESI+							
Method: EPA	1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: kan
Acetamino	phen	ND	1.4	20	ng/l	1	11/17/17 23:27	
Amoxicillin		ND	2.0	10	ng/l	1	11/17/17 23:27	
Atenolol -		ND	0.20	1.0	ng/l	1	11/17/17 23:27	
Atorvastati	n	ND	0.11	1.0	ng/l	1	11/17/17 23:27	
Azithromy	cin	6.1	2.2	10	ng/l	1	11/17/17 23:27	J
Caffeine		1.6	0.31	1.0	ng/l	1	11/17/17 23:27	В
Carbamaze	epine	ND	0.080	1.0	ng/l	1	11/17/17 23:27	
Ciprofloxa	cin	16	1.4	5.0	ng/l	1	11/17/17 23:27	В
Cotinine		ND	0.59	2.0	ng/l	1	11/17/17 23:27	
DEET -		0.88	0.060	1.0	ng/l	1	11/17/17 23:27	
Diazepam		ND	0.14	1.0	ng/l	1	11/17/17 23:27	
Fluoxetine		0.70	0.080	1.0	ng/l	1	11/17/17 23:27	
Meprobam	ate	ND	0.36	1.0	ng/l	1	11/17/17 23:27	
Methadone	;	ND	0.040	1.0	ng/l	1	11/17/17 23:27	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	11/17/17 23:27	
Primidone		ND	0.60	1.0	ng/l	1	11/17/17 23:27	
Sucralose		18	5.0	5.0	ng/l	1	11/17/17 23:27	
Sulfameth	oxazole	1.8	0.19	1.0	ng/l	1	11/17/17 23:27	
TCEP		ND	0.34	1.0	ng/l	1	11/17/17 23:27	
TCPP		ND	0.27	1.0	ng/l	1	11/17/17 23:27	
TDCPP		1.0	0.47	1.0	ng/l	1	11/17/17 23:27	В
Trimethop	rim	0.35	0.24	1.0	ng/l	1	11/17/17 23:27	J

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	ampio i tocalto						,	(Continued)
Sample:	GW-B-03170920				Sam	pled: 09/2	20/17 9:00 by R. Lus	stig/ R. Wilson
	7I22107-10 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	11/17/17 23:43	
Amoxicilli	n	ND	2.0	10	ng/l	1	11/17/17 23:43	
Atenolol		ND	0.20	1.0	ng/l	1	11/17/17 23:43	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	11/17/17 23:43	
Azithrom	ycin	4.5	2.2	10	ng/l	1	11/17/17 23:43	J
Caffeine		1.1	0.31	1.0	ng/l	1	11/17/17 23:43	В
Carbama	zepine	ND	0.080	1.0	ng/l	1	11/17/17 23:43	
Ciproflox	acin		1.4	5.0	ng/l	1	11/17/17 23:43	В
Cotinine		ND	0.59	2.0	ng/l	1	11/17/17 23:43	
DEET -		1.2	0.060	1.0	ng/l	1	11/17/17 23:43	
Diazepan	1	0.28	0.14	1.0	ng/l	1	11/17/17 23:43	J
Fluoxetin	e	0.97	0.080	1.0	ng/l	1	11/17/17 23:43	J
Meprobar	nate	ND	0.36	1.0	ng/l	1	11/17/17 23:43	
Methadoi	10	0.51	0.040	1.0	ng/l	1	11/17/17 23:43	J
Phenytoir	n (Dilantin)	ND	0.33	1.0	ng/l	1	11/17/17 23:43	
Primidone	;	ND	0.60	1.0	ng/l	1	11/17/17 23:43	
Sucralose		ND	5.0	5.0	ng/l	1	11/17/17 23:43	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	11/17/17 23:43	
TCEP -		ND	0.34	1.0	ng/l	1	11/17/17 23:43	
TCPP -		1.3	0.27	1.0	ng/l	1	11/17/17 23:43	В
TDCPP		0.77	0.47	1.0	ng/l	1	11/17/17 23:43	J
Trimethor	prim		0.24	1.0	ng/l	1	11/17/17 23:43	·
		IND	0.2.	1.0	''9''	•	,	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/29/2017 12:44

Project Manager: Jared Ervin

Sample Results

Sample:	GW-G-02_170920				Sam	oled: 09/20	0/17 10:05 by R. Lus	stig/ R. Wilso
	7l22107-11 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
CPs - Pharr	naceuticals by LC/MSMS-ESI+							
	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/				Analyst: ka
Acetamino	•		1.4	20	ng/l	1	11/18/17 00:00	
Amoxicillir			2.0	10	ng/l	1	11/18/17 00:00	
Atenolol -			0.20	1.0	ng/l	1	11/18/17 00:00	
Atorvastat		2	0.11	1.0	ng/l	1	11/18/17 00:00	
Azithromy	cin	ND	2.2	10	ng/l	1	11/18/17 00:00	
Caffeine		0.81	0.31	1.0	ng/l	1	11/18/17 00:00	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	11/18/17 00:00	
Ciproflox	acin	6.0	1.4	5.0	ng/l	1	11/18/17 00:00	
Cotinine		ND	0.59	2.0	ng/l	1	11/18/17 00:00	
DEET -		0.50	0.060	1.0	ng/l	1	11/18/17 00:00	
Diazepam	1	ND	0.14	1.0	ng/l	1	11/18/17 00:00	
Fluoxetine	.	ND	0.080	1.0	ng/l	1	11/18/17 00:00	
Meproban	nate	ND	0.36	1.0	ng/l	1	11/18/17 00:00	
Methadon	ıe	ND	0.040	1.0	ng/l	1	11/18/17 00:00	
Phenytoir	n (Dilantin)	2.3	0.33	1.0	ng/l	1	11/18/17 00:00	
Primidone	:	ND	0.60	1.0	ng/l	1	11/18/17 00:00	
Sucralose)	23	5.0	5.0	ng/l	1	11/18/17 00:00	
Sulfameth	noxazole	6.3	0.19	1.0	ng/l	1	11/18/17 00:00	
TCEP		ND	0.34	1.0	ng/l	1	11/18/17 00:00	
TCPP		0.73	0.27	1.0	ng/l	1	11/18/17 00:00	
TDCPP		0.92	0.47	1.0	ng/l	1	11/18/17 00:00	
Trimethop	orim	ND	0.24	1.0	ng/l	1	11/18/17 00:00	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

Sample:	SW-03-D_170920-EB				Sam	oled: 09/20	0/17 11:20 by R. Lus	stig/ R. Wilson
	7I22107-12 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
CPs - Pharn	naceuticals by LC/MSMS-ESI+							
/lethod: EP/	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: ka
Acetamino	•		1.4	20	ng/l	1	11/18/17 00:49	
Amoxicillin	1	ND	2.0	10	ng/l	1	11/18/17 00:49	
Atenolol -		ND	0.20	1.0	ng/l	1	11/18/17 00:49	
Atorvastat	in	ND	0.11	1.0	ng/l	1	11/18/17 00:49	
Azithromy	cin	ND	2.2	10	ng/l	1	11/18/17 00:49	
Caffeine			0.31	1.0	ng/l	1	11/18/17 00:49	
Carbamaz	epine	ND	0.080	1.0	ng/l	1	11/18/17 00:49	
Ciprofloxa	acin	2.8	1.4	5.0	ng/l	1	11/18/17 00:49	
Cotinine -		ND	0.59	2.0	ng/l	1	11/18/17 00:49	
DEET -		0.75	0.060	1.0	ng/l	1	11/18/17 00:49	
Diazepam		ND	0.14	1.0	ng/l	1	11/18/17 00:49	
Fluoxetine	•	ND	0.080	1.0	ng/l	1	11/18/17 00:49	
Meprobam	nate	ND	0.36	1.0	ng/l	1	11/18/17 00:49	
Methadon	e	ND	0.040	1.0	ng/l	1	11/18/17 00:49	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 00:49	
Primidone		ND	0.60	1.0	ng/l	1	11/18/17 00:49	
Sucralose		ND	5.0	5.0	ng/l	1	11/18/17 00:49	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	11/18/17 00:49	
TCEP		ND	0.34	1.0	ng/l	1	11/18/17 00:49	
TCPP		ND	0.27	1.0	ng/l	1	11/18/17 00:49	
TDCPP		4.9	0.47	1.0	ng/l	1	11/18/17 00:49	
Trimethop	rim	ND	0.24	1.0	ng/l	1	11/18/17 00:49	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

Sample: GW-G-02_170920-EB				Samp	oled: 09/20	0/17 14:12 by R. Lus	stig/ R. Wilson
7I22107-13 (Water)							
Analyte	Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharmaceuticals by LC/MSMS-ESI+							
Method: EPA 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/1				Analyst: kan
Acetaminophen	ND	1.4	20	ng/l	1	11/18/17 01:22	
Amoxicillin	ND	2.0	10	ng/l	1	11/18/17 01:22	
Atenolol	ND	0.20	1.0	ng/l	1	11/18/17 01:22	
Atorvastatin	ND	0.11	1.0	ng/l	1	11/18/17 01:22	
Azithromycin	ND	2.2	10	ng/l	1	11/18/17 01:22	
Caffeine	30	0.31	1.0	ng/l	1	11/18/17 01:22	В
Carbamazepine	ND	0.080	1.0	ng/l	1	11/18/17 01:22	
Ciprofloxacin	ND	1.4	5.0	ng/l	1	11/18/17 01:22	
Cotinine	1.8	0.59	2.0	ng/l	1	11/18/17 01:22	J
DEET	110	0.060	1.0	ng/l	1	11/18/17 01:22	E-01
Diazepam	ND	0.14	1.0	ng/l	1	11/18/17 01:22	
Fluoxetine	ND	0.080	1.0	ng/l	1	11/18/17 01:22	
Meprobamate	ND	0.36	1.0	ng/l	1	11/18/17 01:22	
Methadone	ND	0.040	1.0	ng/l	1	11/18/17 01:22	
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 01:22	
Primidone	ND	0.60	1.0	ng/l	1	11/18/17 01:22	
Sucralose	ND	5.0	5.0	ng/l	1	11/18/17 01:22	
Sulfamethoxazole	ND	0.19	1.0	ng/l	1	11/18/17 01:22	
TCEP	24	0.34	1.0	ng/l	1	11/18/17 01:22	
TCPP	100	0.27	1.0	ng/l	1	11/18/17 01:22	
TDCPP	41	0.47	1.0	ng/l	1	11/18/17 01:22	
Trimethoprim	ND	0.24	1.0	ng/l	1	11/18/17 01:22	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	illible Mesults							(Continued)
Sample:	GW-B-05_170921					S	Sampled: 09/21/17	8:30 by Client
	7I22107-14 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharn	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: kan
Acetamino	pphen	ND	1.4	20	ng/l	1	11/18/17 01:55	
Amoxicillir	1	ND	2.0	10	ng/l	1	11/18/17 01:55	
Atenolol -		ND	0.20	1.0	ng/l	1	11/18/17 01:55	
Atorvastat	in		0.11	1.0	ng/l	1	11/18/17 01:55	
Azithromy	cin	ND	2.2	10	ng/l	1	11/18/17 01:55	
Caffeine		0.74	0.31	1.0	ng/l	1	11/18/17 01:55	J
Carbamaz	epine	ND	0.080	1.0	ng/l	1	11/18/17 01:55	
Ciprofloxa	acin	3.5	1.4	5.0	ng/l	1	11/18/17 01:55	J
Cotinine			0.59	2.0	ng/l	1	11/18/17 01:55	
DEET -		0.63	0.060	1.0	ng/l	1	11/18/17 01:55	J
Diazepam		ND	0.14	1.0	ng/l	1	11/18/17 01:55	
Fluoxetine		ND	0.080	1.0	ng/l	1	11/18/17 01:55	
Meprobam	nate	ND	0.36	1.0	ng/l	1	11/18/17 01:55	
Methadon	e	ND	0.040	1.0	ng/l	1	11/18/17 01:55	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 01:55	
Primidone		ND	0.60	1.0	ng/l	1	11/18/17 01:55	
Sucralose		9.3	5.0	5.0	ng/l	1	11/18/17 01:55	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	11/18/17 01:55	
TCEP -		3.0	0.34	1.0	ng/l	1	11/18/17 01:55	
TCPP -		2.4	0.27	1.0	ng/l	1	11/18/17 01:55	В
TDCPP		0.67	0.47	1.0	ng/l	1	11/18/17 01:55	J
Trimethop	rim	ND	0.24	1.0	ng/l	1	11/18/17 01:55	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	•							`
Sample:	GW-G-01_170921				Samı	oled: 09/2	1/17 10:17 by R. Lus	stig/ R. Wilsor
	7I22107-15 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: ka
Acetamino	ophen	ND	1.4	20	ng/l	1	11/18/17 02:28	
Amoxicillir	1	ND	2.0	10	ng/l	1	11/18/17 02:28	
Atenolol -		ND	0.20	1.0	ng/l	1	11/18/17 02:28	
Atorvastat	in	ND	0.11	1.0	ng/l	1	11/18/17 02:28	
Azithromy	ycin	3.9	2.2	10	ng/l	1	11/18/17 02:28	
Caffeine		0.64	0.31	1.0	ng/l	1	11/18/17 02:28	
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	11/18/17 02:28	
Ciproflox	acin	5.4	1.4	5.0	ng/l	1	11/18/17 02:28	
Cotinine		ND	0.59	2.0	ng/l	1	11/18/17 02:28	
DEET -		0.69	0.060	1.0	ng/l	1	11/18/17 02:28	
Diazepam		ND	0.14	1.0	ng/l	1	11/18/17 02:28	
Fluoxetine	•	ND	0.080	1.0	ng/l	1	11/18/17 02:28	
Meproban	nate	ND	0.36	1.0	ng/l	1	11/18/17 02:28	
Methadon	e	ND	0.040	1.0	ng/l	1	11/18/17 02:28	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 02:28	
Primidone		ND	0.60	1.0	ng/l	1	11/18/17 02:28	
Sucralose		ND	5.0	5.0	ng/l	1	11/18/17 02:28	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	11/18/17 02:28	
TCEP		ND	0.34	1.0	ng/l	1	11/18/17 02:28	
TCPP			0.27	1.0	ng/l	1	11/18/17 02:28	
TDCPP		-	0.47	1.0	ng/l	1	11/18/17 02:28	
Trimethop			0.24	1.0	ng/l	1	11/18/17 02:28	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

Sample:	GW-E-03_170921				Sam	pled: 09/2	1/17 13:45 by R. Lus	stig/ R. Wilso
	7I22107-16 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharn	naceuticals by LC/MSMS-ESI+							
Method: EPA	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: ka
Acetamino	ophen	ND	1.4	20	ng/l	1	11/18/17 03:01	
Amoxicillir	1	ND	2.0	10	ng/l	1	11/18/17 03:01	
Atenolol -		ND	0.20	1.0	ng/l	1	11/18/17 03:01	
Atorvastat	in	ND	0.11	1.0	ng/l	1	11/18/17 03:01	
Azithromy	cin	ND	2.2	10	ng/l	1	11/18/17 03:01	
Caffeine		2.4	0.31	1.0	ng/l	1	11/18/17 03:01	1
Carbamaz	zepine	ND	0.080	1.0	ng/l	1	11/18/17 03:01	
Ciproflox	acin	3.8	1.4	5.0	ng/l	1	11/18/17 03:01	
Cotinine -		ND	0.59	2.0	ng/l	1	11/18/17 03:01	
DEET -		2.6	0.060	1.0	ng/l	1	11/18/17 03:01	
Diazepam		ND	0.14	1.0	ng/l	1	11/18/17 03:01	
Fluoxetine	9	0.17	0.080	1.0	ng/l	1	11/18/17 03:01	
Meproban	nate	ND	0.36	1.0	ng/l	1	11/18/17 03:01	
Methadon	e	ND	0.040	1.0	ng/l	1	11/18/17 03:01	
Phenytoin	(Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 03:01	
Primidone		ND	0.60	1.0	ng/l	1	11/18/17 03:01	
Sucralose		ND	5.0	5.0	ng/l	1	11/18/17 03:01	
Sulfameth	oxazole	ND	0.19	1.0	ng/l	1	11/18/17 03:01	
TCEP		ND	0.34	1.0	ng/l	1	11/18/17 03:01	
TCPP		1.3	0.27	1.0	ng/l	1	11/18/17 03:01	ı
TDCPP		1.6	0.47	1.0	ng/l	1	11/18/17 03:01	
Trimethop	rim	ND	0.24	1.0	ng/l	1	11/18/17 03:01	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Sample Results

	ampio i todalio						'	(Continued)
Sample:	GW-E-03_170921-DUP				Sam	pled: 09/2	1/17 13:45 by R. Lus	stig/ R. Wilson
	7I22107-17 (Water)							
Analyte		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+							
Method: EP	A 1694M-ESI+	Batch ID: W7J0492		Prepared: 10/	10/17 08:21			Analyst: kan
Acetamin	ophen	ND	1.4	20	ng/l	1	11/18/17 03:34	
Amoxicilli	n	ND	2.0	10	ng/l	1	11/18/17 03:34	
Atenolol		ND	0.20	1.0	ng/l	1	11/18/17 03:34	
Atorvasta	tin	ND	0.11	1.0	ng/l	1	11/18/17 03:34	
Azithromy	cin	ND	2.2	10	ng/l	1	11/18/17 03:34	
Caffeine		1.2	0.31	1.0	ng/l	1	11/18/17 03:34	В
Carbama	zepine		0.080	1.0	ng/l	1	11/18/17 03:34	
Ciprofloxa	acin	ND	1.4	5.0	ng/l	1	11/18/17 03:34	
Cotinine		ND	0.59	2.0	ng/l	1	11/18/17 03:34	
DEET -		0.72	0.060	1.0	ng/l	1	11/18/17 03:34	J
Diazepan	1	ND	0.14	1.0	ng/l	1	11/18/17 03:34	
Fluoxetine	8	ND	0.080	1.0	ng/l	1	11/18/17 03:34	
Meprobar	mate	ND	0.36	1.0	ng/l	1	11/18/17 03:34	
Methador	ne	ND	0.040	1.0	ng/l	1	11/18/17 03:34	
Phenytoir	n (Dilantin)	ND	0.33	1.0	ng/l	1	11/18/17 03:34	
Primidone)	ND	0.60	1.0	ng/l	1	11/18/17 03:34	
Sucralose	;	ND	5.0	5.0	ng/l	1	11/18/17 03:34	
Sulfameth	noxazole	ND	0.19	1.0	ng/l	1	11/18/17 03:34	
TCEP -		ND	0.34	1.0	ng/l	1	11/18/17 03:34	
TCPP			0.27	1.0	ng/l	1	11/18/17 03:34	В
TDCPP		5.3	0.47	1.0	ng/l	1	11/18/17 03:34	В
Trimethor	prim		0.24	1.0	ng/l	1	11/18/17 03:34	_
	·····	140	0.2.	1.0	''9''	•	. 17 10/11 00:04	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported: 11/29/2017 12:44

Project Manager: Jared Ervin

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS-ESI+										
				Spike	Source		%REC		RPD	
Analyte Resu etch: W7J0492 - EPA 1694M-ESI+	ılt MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
			D		47 4	44/47/4	-			
Blank (W7J0492-BLK1) Acetaminophen N	D 1.4	20	ng/l	pared: 10/10/	17 Analyzed	: 11/1//1	,			
AmoxicillinN	D 2.0	10	ng/l							
AtenololN	D 0.20	1.0	ng/l							
Atorvastatin	4 0.11	1.0	ng/l							
Azithromycin 21	2 2.2	10	ng/l							
Caffeine5.8	35 0.31	1.0	ng/l							
CarbamazepineN	D 0.080	1.0	ng/l							
Ciprofloxacin	5 1.4	5.0	ng/l							
Cotinine	32 0.59	2.0	ng/l							
DEET 0.78	86 0.060	1.0	ng/l							
Diazepam 0.14	0.14	1.0	ng/l							
Fluoxetine 0.45	0.080	1.0	ng/l							
Meprobamate 0.58	32 0.36	1.0	ng/l							
MethadoneN	D 0.040	1.0	ng/l							
Phenytoin (Dilantin)	D 0.33	1.0	ng/l							
PrimidoneN	D 0.60	1.0	ng/l							
Sulfamethoxazole	D 0.19	1.0	ng/l							
TCEP 0.40	0.34	1.0	ng/l							
TCPP	3 0.27	1.0	ng/l							
TDCPP	66 0.47	1.0	ng/l							
TrimethoprimN	D 0.24	1.0	ng/l							
CS (W7J0492-BS1)			Dro	pared: 10/10/	17 Analyzed	· 11/17/1	7			
Acetaminophen 20	9 1.4	20	ng/l	200	17 Allalyzeu	104	66-156			
Amoxicillin	34 2.0	10	ng/l				14-167			
Atenolol	.2 0.20	1.0	ng/l	10.0		102	56-164			
Atorvastatin 7.8	32 0.11	1.0	ng/l	10.0		78	0.1-173			
Azithromycin 11	9 2.2	10	ng/l	100		119	52-166			
Caffeine 11	.6 0.31	1.0	ng/l	10.0		116	55-152			
Carbamazepine 9.8	0.080	1.0	ng/l	10.0		99	60-135			
Ciprofloxacin 82	.9 1.4	5.0	ng/l	50.0		166	51-168			
Cotinine	.4 0.59	2.0	ng/l	10.0		104	68-155			
DEET	.4 0.060	1.0	ng/l	10.0		124	45-135			
Diazepam 10	.3 0.14	1.0	ng/l	10.0		103	58-127			
Fluoxetine 9.4	0.080	1.0	ng/l	10.0		95	55-150			
Meprobamate	.6 0.36	1.0	ng/l	10.0		346	11-166			В
Methadone 10	.4 0.040	1.0	ng/l	10.0		104	62-137			
Phenytoin (Dilantin)	.9 0.33	1.0	ng/l	10.0		109	69-138			
22107			-							Page 20

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Quality Control Results

CPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)											
Analyte F	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
h: W7J0492 - EPA 1694M-ESI+ (Continued)	resuit	WIDE	WIKE	Omis	Level	Resurt	ANCE	Lilling	KI D	Lillit	Qualifi
5 (W7J0492-BS1)				Pre	pared: 10/10/	17 Analyzed:	: 11/17/1	7			
Primidone	9.11	0.60	1.0	ng/l	10.0	y_c	91	54-147			
Sulfamethoxazole	11.2	0.19	1.0	ng/l	10.0		112	60-133			
CEP	8.83	0.34	1.0	ng/l	10.0		88	25-149			
CPP	7.31	0.27	1.0	ng/l	10.0		73	24-149			
DCPP	9.96	0.47	1.0	ng/l	10.0		100	20-158			
rimethoprim	10.7	0.24	1.0	ng/l	10.0		107	67-139			
5 Dup (W7J0492-BSD1)				Pre	pared: 10/10/	17 Analyzed:	: 11/17/1	7			
cetaminophen	222	1.4	20	ng/l	200	, ,	111	66-156	6	30	
Amoxicillin	147	2.0	10	ng/l				14-167	9	30	
Atenolol	10.4	0.20	1.0	ng/l	10.0		104	56-164	2	30	
Atorvastatin	4.05	0.11	1.0	ng/l	10.0		40	0.1-173	64	30	Q-1
zithromycin	124	2.2	10	ng/l	100		124	52-166	4	30	
Caffeine	12.2	0.31	1.0	ng/l	10.0		122	55-152	5	30	
Carbamazepine	12.0	0.080	1.0	ng/l	10.0		120	60-135	20	30	
Ciprofloxacin	78.8	1.4	5.0	ng/l	50.0		158	51-168	5	30	
Cotinine	10.6	0.59	2.0	ng/l	10.0		106	68-155	2	30	
DEET	12.4	0.060	1.0	ng/l	10.0		124	45-135	0	30	
Diazepam	9.98	0.14	1.0	ng/l	10.0		100	58-127	3	30	
luoxetine	10.4	0.080	1.0	ng/l	10.0		104	55-150	9	30	
Meprobamate	30.6	0.36	1.0	ng/l	10.0		306	11-166	12	30	BS-
Methadone	12.5	0.040	1.0	ng/l	10.0		125	62-137	18	30	
Phenytoin (Dilantin)	10.5	0.33	1.0	ng/l	10.0		105	69-138	4	30	
Primidone	12.9	0.60	1.0	ng/l	10.0		129	54-147	34	30	Q-1
Sulfamethoxazole	12.4	0.19	1.0	ng/l	10.0		124	60-133	10	30	
CEP	17.3	0.34	1.0	ng/l	10.0		173	25-149	65	30	BS-0
CPP	12.9	0.27	1.0	ng/l	10.0		129	24-149	55	30	Q-1
DCPP	34.3	0.47	1.0	ng/l	10.0		343	20-158	110	30	BS-0
rimethoprim	9.88	0.24	1.0	ng/l	10.0		99	67-139	8	30	
h: W7J1076 - EPA 1694M-ESI+											
ink (W7J1076-BLK1)				Pre	pared: 09/25/	17 Analyzed:	: 10/14/1	7			
Acetaminophen	ND	1.4	20	ng/l		•					
Amoxicillin	ND	2.0	10	ng/l							
stenolol	ND	0.20	1.0	ng/l							
Caffeine).871	0.31	1.0	ng/l							
Carbamazepine	ND	0.080	1.0	ng/l							
Cotinine	ND	0.59	2.0	ng/l							
DEET	1.03	0.060	1.0	ng/l							
DEET	1.03	0.060	1.0	ng/l							Pa

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W7J1076 - EPA 1694M-ESI+ (Continued)											
Blank (W7J1076-BLK1)				Pre	pared: 09/25/1	7 Analyzed:	10/14/17	7			
Diazepam	ND	0.14	1.0	ng/l							
Fluoxetine		0.080	1.0	ng/l							
Meprobamate	ND	0.36	1.0	ng/l							
Methadone	ND	0.040	1.0	ng/l							
Primidone	ND	0.60	1.0	ng/l							
Sulfamethoxazole	ND	0.19	1.0	ng/l							
Trimethoprim	ND	0.24	1.0	ng/l							
Blank (W7J1076-BLK2)				Pre	pared: 09/25/1	7 Analyzed:	10/21/17	7			
Atorvastatin	· ND	0.11	1.0	ng/l							QC-
Azithromycin	ND	2.2	10	ng/l							QC
Ciprofloxacin		1.4	5.0	ng/l							QC-2,
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l							QC
TCEP	ND	0.34	1.0	ng/l							QC
TCPP	ND	0.27	1.0	ng/l							QC
TDCPP	ND	0.47	1.0	ng/l							QC
LCS (W7J1076-BS1)				Pre	pared: 09/25/1	7 Analyzed:	10/14/17	7			
Acetaminophen	233	1.4	20	ng/l	200		116	66-156			
Amoxicillin	- 87.7	2.0	10	ng/l				14-167			
Atenolol	- 13.4	0.20	1.0	ng/l	10.0		134	56-164			
Caffeine	- 11.6	0.31	1.0	ng/l	10.0		116	55-152			
Carbamazepine	- 13.5	0.080	1.0	ng/l	10.0		135	60-135			
Cotinine	12.6	0.59	2.0	ng/l	10.0		126	68-155			
DEET	- 12.1	0.060	1.0	ng/l	10.0		121	45-135			
Diazepam	- 12.1	0.14	1.0	ng/l	10.0		121	58-127			
Fluoxetine	12.8	0.080	1.0	ng/l	10.0		128	55-150			
Meprobamate	- 17.2	0.36	1.0	ng/l	10.0		172	11-166			BS-
Methadone	- 11.7	0.040	1.0	ng/l	10.0		117	62-137			
Primidone	- 10.4	0.60	1.0	ng/l	10.0		104	54-147			
Sulfamethoxazole	- 12.7	0.19	1.0	ng/l	10.0		127	60-133			
Trimethoprim	- 10.1	0.24	1.0	ng/l	10.0		101	67-139			
LCS (W7J1076-BS2)				Pre	pared: 09/25/1	7 Analyzed:	10/21/17	7			
Atorvastatin		0.11	1.0	ng/l	10.0		62	0.1-173			QC
Azithromycin	115	2.2	10	ng/l	100		115	52-166			QC
Ciprofloxacin	54.4	1.4	5.0	ng/l	50.0		109	51-168			QC
Phenytoin (Dilantin)	- 13.3	0.33	1.0	ng/l	10.0		133	69-138			QC
TCEP · · · · · · · · · · · · · · · · · · ·	- 12.2	0.34	1.0	ng/l	10.0		122	25-149			QC
TCPP · · · · · · · · · · · · · · · · · ·	3.75	0.27	1.0	ng/l	10.0		38	24-149			QC
22107											Page 22 d

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)											
					Spike	Source		%REC		RPD	
Analyte R	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W7J1076 - EPA 1694M-ESI+ (Continued)											
LCS (W7J1076-BS2)					oared: 09/25/1	7 Analyzed:					
TDCPP	11.9	0.47	1.0	ng/l	10.0		119	20-158			QC-
LCS Dup (W7J1076-BSD1)				Pre	oared: 09/25/1	7 Analyzed:	10/14/1				
•	227	1.4	20	ng/l	200		114	66-156	3	30	
Amoxicillin	116	2.0	10	ng/l				14-167	28	30	
Atenolol	13.8	0.20	1.0	ng/l	10.0		138	56-164	3	30	
Caffeine	12.9	0.31	1.0	ng/l	10.0		129	55-152	11	30	
Carbamazepine	12.3	0.080	1.0	ng/l	10.0		123	60-135	9	30	
Cotinine	10.0	0.59	2.0	ng/l	10.0		100	68-155	23	30	
DEET	13.9	0.060	1.0	ng/l	10.0		139	45-135	14	30	Q-N
Diazepam	11.2	0.14	1.0	ng/l	10.0		112	58-127	8	30	
Fluoxetine	11.0	0.080	1.0	ng/l	10.0		110	55-150	15	30	
Meprobamate	32.4	0.36	1.0	ng/l	10.0		324	11-166	61	30	BS
Methadone	10.5	0.040	1.0	ng/l	10.0		105	62-137	11	30	
Primidone	10.1	0.60	1.0	ng/l	10.0		101	54-147	3	30	
Sulfamethoxazole	11.0	0.19	1.0	ng/l	10.0		110	60-133	14	30	
Trimethoprim	10.0	0.24	1.0	ng/l	10.0		100	67-139	1	30	
LCS Dup (W7J1076-BSD2)				Prej	pared: 09/25/1	7 Analyzed:	10/21/1	7			
Atorvastatin	3.98	0.11	1.0	ng/l	10.0	•	40	0.1-173	44	30	Q-12, QC
Azithromycin	107	2.2	10	ng/l	100		107	52-166	7	30	QC
Ciprofloxacin	50.0	1.4	5.0	ng/l	50.0		100	51-168	8	30	QC
Phenytoin (Dilantin)	13.1	0.33	1.0	ng/l	10.0		131	69-138	2	30	QC
TCEP	7.56	0.34	1.0	ng/l	10.0		76	25-149	47	30	Q-12, QC
TCPP	1.03	0.27	1.0	ng/l	10.0		10	24-149	114	30	BS-04
TDCPP	9.61	0.47	1.0	ng/l	10.0		96	20-158	21	30	QC

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

11/29/2017 12:44

Notes and Definitions

Item	Definition
В	Blank contamination. The analyte was found in the associated blank as well as in the sample.
BS-04	The recovery of this analyte in LCS or LCSD was outside control limit. Sample was accepted based on the remaining LCS, LCSD or LCS-LL.
BS-H	The recovery of this analyte in the BS/LCS was over the control limit. Sample result is suspect.
E-01	The concentration indicated for this analyte is an estimated value above the calibration range.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
Q-12	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
QC-2	This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
Q-ME	Acceptable QC with marginal exceedance
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

	Weck Laboratories, Inc.	CHAIN OF CUSTODY RECORD
14859 East Clark Avenue: Industry: CA 91745	Analytical Laboratory Services - Since 1964	STANDARD Page 1 Of 3
CLIENT NAME: Geosyntec	DJECT: VCEHD OWTS Տեսժу (LA0391)	ANALYSES REQUESTED SPECIAL HANDLING
	=SI+	Same Day Aush 150% 24 Hour Rush 100%
ADDRESS:	NE: Jared Ervin: 805-979-9129	48-72 Hour Rush 75%
924 Anacapa St., Suite 4A	lenvin@Geosyntec.com	Rush Extractions 50%
Santa Barbara, CA 93101	EMAIL: Jelvint@Occosymics.com	10 - 15 Business Days
PROJECT MANAGER: Jared Ervin	SAMPLER: 2 LUSTIB / L. WILSON B	QAQC Data Package Charges will apply for weekends/holidays
TIME	SMPL SAMPLE IDENTIFICATION/SITE LOCATION #0F C	Method of Shipment:
SAMPLED) () () () () () () () () () (
31:01 7 1811	40 GW-704-17018 2 X	
61/8/19	x 6 816061-50-9-000 88	
1 4:3S	98 GW-A-01 170918 2 X	
0:00	AR GN-C-BX-06-170919 2 x	
64:01 ti		
17:30	AD 5W-03-U_170919 2 X	
	AB GW-C-07-170919 2 X	
157:51 4/1/10	b160£1	
	X 2 12641-140-0-MU BY	
09,00	DQ G14-13-03-170020 2-X	
1005	10 CHW-6-07-170970 2 X	
0711 +1/01/2	AQ 5W-03-D-170900 7 X	
RELINQUISHED BY	RECEIVED BY	SAMPLE CONDITION: ACTAQUEOUS NA= Non Aqueous
<u> </u>	1 Acost Lisa	
	m	
REESE MUSON USC	Main 14:50 Kaecen Lie	d sent
RELINQUISHED BY	DATE / TIME RECEIVED BY	Preserved at Lab Y W SO = Solid Waste
- KINSOUN LISTS	17-1	OL = Oil OT = Other Matrix
PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY OVER UNSCHEDULED ROSH REQUESTS	SPECIAL REQUIREMENTS / BILLING INF	ORMANION 9/22/7 1440
Client agrees to lermy & congritions at:		
Men	ON WILL	

X	Weck Laboratories, Inc.	CHAIN OF CUSTODY RECORD	Y RECORD
Analysical L 14859 East Clark Avenue : Industry : CA 91745 Tel 626-336-2139 ♦ Fax 626-336-2634 ♦ www.wecklabs.com	Analytical Laboratory Services - Since 1954 1745 www.wecklabs.com	STANDARD	Page 2 of 2
CLIENT NAME: Geosyntec	WTS Study (LA0391)	ANALYSES REQUESTED	SPECIAL HANDLING Same Day Rush 150% 24 Hour Rush 100%
ADDRESS:	PHONE: Jared Ervin: 805-979-9129 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		48-72 Hour Rush 75% 4 - 5 Day Rush 30%
Santa Barbara, CA 93101	L: Jervin@Geosyntec.com		Rush Extractions 50% 10 - 15 Business Days
PROJECT MANAGER: Jared Ervin	SAMPLER: Dy SAMPLER SAMPLER: Dy SAMPLER: D		QA/QC Deta Package Charges will apply for weekends/holidays
ID# DATE TIME SMPL (For lab Use Only) SAMPLED SAMPLED TYPE	SAMPLE IDENTIFICATION/SITE LOCATION #0F	O. M.	Method of Shipment: COMMENTS
9/20/17-1412	2 GW-G-02 176920-EB 2 X		
0830	GW-6-05_175921		
12x - 7 / 0/ Fr/15/6	G12-6-01		
9/21/17 1345 AC			
	GW E03-		
RELINQUISHED BY	DATE/TIME RECEIVED BY	SAMPLE CONDITION: Actual Temperature:	DITION: SAMPLE TYPE CODE: AQ=Aqueous NA= Non Aqueous SL = Sludge
REKINOWISHED BY DA	02/17270 RECEIVED BY	Received On ice Preserved Evidence Seals Present Container Attacked	N DW = Drinking Water WW = Waste Water RW = Rain Water RW = Ground Water
RELINQUISHED BY	DATE / TIME RECEIVED BY	Preserved at Lab	SO = Soil SW = Soild Waste OL = Oil OT = Other Matrix
PRESCHEDULED RUSH ANALYSES WILL TAKE PRIC	PRIORITY SPECIAL REQUIREMENTS / BILLING INFORMATION	RMATION	

FINAL REPORT

Work Orders: 8D06080 **Report Date:** 6/27/2018

Received Date: 4/6/2018

Project: VCEHD OWTS Study (LA0391)

Turnaround Time: Normal

Phones: (805) 979-9129

Fax: (805) 899-8689

P.O. #:

Billing Code:

Attn: Jared Ervin

Client: Geosyntec Consultants - Santa Barbara

924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-CA #04229CA • NELAP-OR #4047 • NJ-DEP #CA015

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jared Ervin,

Enclosed are the results of analyses for samples received 4/06/18 with the Chain-of-Custody document. The samples were received in good condition, at 4.7 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Brandon Gee

Operations Manager/Senior PM

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifier
SW-04-D_180402	RebeccaL.	8D06080-01	Water	04/02/18 09:18	
GW-E-02_180402	RebeccaL.	8D06080-02	Water	04/02/18 10:35	
GW-E-03_180402	RebeccaL.	8D06080-03	Water	04/02/18 11:00	
SW-05-D_180402	RebeccaL.	8D06080-04	Water	04/02/18 11:55	
SW-04-U_180402	RebeccaL.	8D06080-05	Water	04/02/18 13:30	
SW-03-D_180402	RebeccaL.	8D06080-06	Water	04/02/18 14:25	
GW-A-03_180403	RebeccaL.	8D06080-07	Water	04/03/18 09:03	
GW-A-02_180403	RebeccaL.	8D06080-08	Water	04/03/18 09:31	
GW-A-04_180403	RebeccaL.	8D06080-09	Water	04/03/18 09:59	
GW-A-01_180403	RebeccaL.	8D06080-10	Water	04/03/18 10:30	
GW-F-02_180403	RebeccaL.	8D06080-11	Water	04/03/18 11:17	
SW-01-D_180403	RebeccaL.	8D06080-12	Water	04/03/18 12:31	
GW-C-07_180403	RebeccaL.	8D06080-13	Water	04/03/18 13:19	
GW-C-08_180403	RebeccaL.	8D06080-14	Water	04/03/18 13:37	
GW-B-03_180404	RebeccaL.	8D06080-15	Water	04/04/18 09:02	
GW-C-BK-06_180404	RebeccaL.	8D06080-16	Water	04/04/18 10:30	
GW-D-07_180404	RebeccaL.	8D06080-17	Water	04/04/18 10:55	
SW-03-U_180404	RebeccaL.	8D06080-18	Water	04/04/18 12:11	
GW-A-07_180404	RebeccaL.	8D06080-19	Water	04/04/18 12:56	
SW-02-D_180404	RebeccaL.	8D06080-20	Water	04/04/18 13:27	
SW-02-U_180405	RebeccaL.	8D06080-21	Water	04/05/18 09:38	
GW-D-05_180405	RebeccaL.	8D06080-22	Water	04/05/18 11:02	
GW-D-05_180405_DUP	RebeccaL.	8D06080-23	Water	04/05/18 11:02	
GW-0-02_180405	RebeccaL.	8D06080-24	Water	04/05/18 12:45	
GW-B-04_180405	RebeccaL.	8D06080-25	Water	04/05/18 14:06	
GW-B-04_180405_EQ	RebeccaL.	8D06080-26	Water	04/05/18 14:06	
GW-G-01_180406	RebeccaL.	8D06080-27	Water	04/06/18 09:50	
GW-G-01_180406	Rebecca L.	8D06080-28	Water	04/06/18 09:50	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A

Project Number: VCEHD OWTS Study (LA0391)

Reported:

06/27/2018 15:41

Santa Barbara, CA 93101

Sample Results

Project Manager: Jared Ervin

Sample:	SW-04-D_180402						Sam	pled: 04/02/18 9:18 b	y RebeccaL.
	8D06080-01 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharn	naceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	phen		ND	1.4	20	ng/l	1	05/30/18 20:24	
Amoxicillir	1			2.0	10	ng/l	1	05/30/18 20:24	I-05
Atenolol -			ND	0.20	1.0	ng/l	1	05/30/18 20:24	
Atorvastat	in		ND	0.11	1.0	ng/l	1	05/30/18 20:24	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 20:24	
Caffeine			12	0.31	1.0	ng/l	1	05/30/18 20:24	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 20:24	
Ciprofloxa	cin		ND	1.4	5.0	ng/l	1	05/30/18 20:24	
Cotinine -			ND	0.59	2.0	ng/l	1	05/30/18 20:24	
DEET			1.4	0.060	1.0	ng/l	1	05/30/18 20:24	
Diazepam			ND	0.14	1.0	ng/l	1	05/30/18 20:24	
Fluoxetine			ND	0.080	1.0	ng/l	1	05/30/18 20:24	
Meprobam	nate		ND	0.36	1.0	ng/l	1	05/14/18 18:40	
Methadon	e		ND	0.040	1.0	ng/l	1	05/30/18 20:24	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 20:24	
Primidone	!		ND	0.60	1.0	ng/l	1	05/30/18 20:24	
Sucralose			ND	5.0	5.0	ng/l	1	05/30/18 20:24	
Sulfameth	oxazole		ND	0.19	1.0	ng/l	1	05/30/18 20:24	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 20:24	
TCPP -			12	0.27	1.0	ng/l	1	05/14/18 18:40	
TDCPP			13	0.47	1.0	ng/l	1	05/14/18 18:40	В
Trimethop	rim		ND	0.24	1.0	ng/l	1	05/30/18 20:24	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampie results							(0	Jonanaea)
Sample:	GW-E-02_180402						Samp	oled: 04/02/18 10:35 b	y RebeccaL.
	8D06080-02 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	05/30/18 20:40	
Amoxicilli	n		ND	2.0	10	ng/l	1	05/30/18 20:40	I-05
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 20:40	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	05/30/18 20:40	
Azithromy	ycin		ND	2.2	10	ng/l	1	05/30/18 20:40	
Caffeine			2.3	0.31	1.0	ng/l	1	05/30/18 20:40	
Carbama	zepine		ND	0.080	1.0	ng/l	1	05/30/18 20:40	
Ciproflox	acin		2.0	1.4	5.0	ng/l	1	05/30/18 20:40	J
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 20:40	
DEET -			1.1	0.060	1.0	ng/l	1	05/30/18 20:40	
Diazepam	n		ND	0.14	1.0	ng/l	1	05/30/18 20:40	
Fluoxetin	ne		0.23	0.080	1.0	ng/l	1	05/30/18 20:40	J
Meprobar	mate		ND	0.36	1.0	ng/l	1	05/14/18 18:57	
Methador	ne		ND	0.040	1.0	ng/l	1	05/30/18 20:40	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 20:40	
Primidone	9		ND	0.60	1.0	ng/l	1	05/30/18 20:40	
Sucralose	3		ND	5.0	5.0	ng/l	1	05/30/18 20:40	
Sulfamet	hoxazole		0.95	0.19	1.0	ng/l	1	05/30/18 20:40	J
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 20:40	
ТСРР -			4.6	0.27	1.0	ng/l	1	05/14/18 18:57	
TDCPP			1.2	0.47	1.0	ng/l	1	05/14/18 18:57	В
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/30/18 20:40	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampro i tocano							, ,	ontinaca)
Sample:	GW-E-03_180402						Samp	oled: 04/02/18 11:00 b	y RebeccaL.
	8D06080-03 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS()2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	05/30/18 20:57	
Amoxicilli	n		ND	2.0	10	ng/l	1	05/30/18 20:57	I-05
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 20:57	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	05/30/18 20:57	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 20:57	
Caffeine			1.1	0.31	1.0	ng/l	1	05/30/18 20:57	
Carbama	zepine		ND	0.080	1.0	ng/l	1	05/30/18 20:57	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/30/18 20:57	
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 20:57	
DEET -			0.81	0.060	1.0	ng/l	1	05/30/18 20:57	J
Diazepan	1		ND	0.14	1.0	ng/l	1	05/30/18 20:57	
Fluoxetin	ie		0.22	0.080	1.0	ng/l	1	05/30/18 20:57	J
Meprobar	mate		ND	0.36	1.0	ng/l	1	05/14/18 19:13	
Methador	ne		ND	0.040	1.0	ng/l	1	05/30/18 20:57	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 20:57	
Primidon	e		2.1	0.60	1.0	ng/l	1	05/30/18 20:57	
Sucralose	e		ND	5.0	5.0	ng/l	1	05/30/18 20:57	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/30/18 20:57	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 20:57	
TCPP -			2.5	0.27	1.0	ng/l	1	05/14/18 19:13	
TDCPP			2.3	0.47	1.0	ng/l	1	05/14/18 19:13	В
Trimethor				0.24	1.0	ng/l	1	05/30/18 20:57	
			110	U.L-T	1.0	9/1		00,00,10 20.01	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample

Sample Results

Sample:	SW-05-D_180402						Samp	oled: 04/02/18 11:55 b	y Rebeccal
	8D06080-04 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharn	naceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared: (04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/30/18 21:13	
Amoxicillir	1		ND	2.0	10	ng/l	1	05/30/18 21:13	I-C
Atenolol -			ND	0.20	1.0	ng/l	1	05/30/18 21:13	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/30/18 21:13	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 21:13	
Caffeine			14	0.31	1.0	ng/l	1	05/30/18 21:13	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 21:13	
Ciproflox	acin		1.6	1.4	5.0	ng/l	1	05/30/18 21:13	
Cotinine			0.65	0.59	2.0	ng/l	1	05/30/18 21:13	
DEET -			1.1	0.060	1.0	ng/l	1	05/30/18 21:13	
Diazepam			ND	0.14	1.0	ng/l	1	05/30/18 21:13	
Fluoxetine	e		0.34	0.080	1.0	ng/l	1	05/30/18 21:13	
Meproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 19:30	
Methadon	e		ND	0.040	1.0	ng/l	1	05/30/18 21:13	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 21:13	
Primidone			ND	0.60	1.0	ng/l	1	05/30/18 21:13	
Sucralose			ND	5.0	5.0	ng/l	1	05/30/18 21:13	
Sulfameth	oxazole		ND	0.19	1.0	ng/l	1	05/30/18 21:13	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 21:13	
TCPP				0.27	1.0	ng/l	1	05/14/18 19:30	
TDCPP -				0.47	1.0	ng/l	1	05/14/18 19:30	
Trimethop			112	0.24	1.0	ng/l	1	05/30/18 21:13	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	SW-04-U_180402						Samp	oled: 04/02/18 13:30 b	y Rebecca
	8D06080-05 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualific
CPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/30/18 21:30	
Amoxicillir	n		ND	2.0	10	ng/l	1	05/30/18 21:30	I-C
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 21:30	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/30/18 21:30	
Azithromy	ycin		ND	2.2	10	ng/l	1	05/30/18 21:30	
Caffeine			14	0.31	1.0	ng/l	1	05/30/18 21:30	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 21:30	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/30/18 21:30	
Cotinine -			ND	0.59	2.0	ng/l	1	05/30/18 21:30	
DEET -			1.1	0.060	1.0	ng/l	1	05/30/18 21:30	
Diazepam	n		ND	0.14	1.0	ng/l	1	05/30/18 21:30	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	05/30/18 21:30	
Meproban	mate		ND	0.36	1.0	ng/l	1	05/14/18 19:46	
Methadon	ne		ND	0.040	1.0	ng/l	1	05/30/18 21:30	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 21:30	
Primidone	9		ND	0.60	1.0	ng/l	1	05/30/18 21:30	
Sucralose	3		ND	5.0	5.0	ng/l	1	05/30/18 21:30	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/30/18 21:30	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 21:30	
TCPP -			4.7	0.27	1.0	ng/l	1	05/14/18 19:46	
TDCPP -			ND	0.47	1.0	ng/l	1	05/14/18 19:46	
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/30/18 21:30	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	SW-03-D_180402						Sam	oled: 04/02/18 14:25 b	y RebeccaL.
	8D06080-06 (Water)								
Analyte	, ,		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharma	ceuticals by LC/MSMS-ESI+								
Method: EPA 1	1694M-ESI+	Batch ID: W8D1411	Instr: LCMS	02	Prepared:	04/24/18 10:31		Analyst: kan	
Acetaminopl	hen		ND	1.4	20	ng/l	1	05/30/18 21:46	
Amoxicillin			ND	2.0	10	ng/l	1	05/30/18 21:46	I-05
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 21:46	
Atorvastatin			ND	0.11	1.0	ng/l	1	05/30/18 21:46	
Azithromycir	n		ND	2.2	10	ng/l	1	05/30/18 21:46	
Caffeine			11	0.31	1.0	ng/l	1	05/30/18 21:46	
Carbamaze	pine		ND	0.080	1.0	ng/l	1	05/30/18 21:46	
Ciprofloxac	in		1.4	1.4	5.0	ng/l	1	05/30/18 21:46	,
Cotinine			0.75	0.59	2.0	ng/l	1	05/30/18 21:46	
DEET			3.0	0.060	1.0	ng/l	1	05/30/18 21:46	
Diazepam			ND	0.14	1.0	ng/l	1	05/30/18 21:46	
Fluoxetine			ND	0.080	1.0	ng/l	1	05/30/18 21:46	
Meprobama	te		ND	0.36	1.0	ng/l	1	05/14/18 20:03	
Methadone			ND	0.040	1.0	ng/l	1	05/30/18 21:46	
Phenytoin ([Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 21:46	
Primidone			ND	0.60	1.0	ng/l	1	05/30/18 21:46	
Sucralose			ND	5.0	5.0	ng/l	1	05/30/18 21:46	
Sulfamethox	kazole		ND	0.19	1.0	ng/l	1	05/30/18 21:46	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 21:46	
TCPP			7.5	0.27	1.0	ng/l	1	05/14/18 20:03	
TDCPP			0.54	0.47	1.0	ng/l	1	05/14/18 20:03	
Trimethoprin	m		ND	0.24	1.0	ng/l	1	05/30/18 21:46	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampio i todatto							(Jonanaca)
Sample:	GW-A-03_180403						Sam	pled: 04/03/18 9:03 b	y RebeccaL
	8D06080-07 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	PA 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS()2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamin	nophen		ND	1.4	20	ng/l	1	05/30/18 22:03	
Amoxicilli	in		ND	2.0	10	ng/l	1	05/30/18 22:03	1-0
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 22:03	
Atorvasta	atin		ND	0.11	1.0	ng/l	1	05/30/18 22:03	
Azithromy	ycin		ND	2.2	10	ng/l	1	05/30/18 22:03	
Caffeine			0.93	0.31	1.0	ng/l	1	05/30/18 22:03	
Carbama	zepine		ND	0.080	1.0	ng/l	1	05/30/18 22:03	
Ciproflox	cacin		2.0	1.4	5.0	ng/l	1	05/30/18 22:03	
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 22:03	
DEET -			1.4	0.060	1.0	ng/l	1	05/30/18 22:03	
Diazepan	n		0.17	0.14	1.0	ng/l	1	05/30/18 22:03	,
Fluoxetin	e		ND	0.080	1.0	ng/l	1	05/30/18 22:03	
Meprobar	mate		ND	0.36	1.0	ng/l	1	05/14/18 20:19	
Methador	ne		ND	0.040	1.0	ng/l	1	05/30/18 22:03	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 22:03	
Primidone	e		ND	0.60	1.0	ng/l	1	05/30/18 22:03	
Sucralose	e		ND	5.0	5.0	ng/l	1	05/30/18 22:03	
Sulfamet	thoxazole		0.74	0.19	1.0	ng/l	1	05/30/18 22:03	,
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 22:03	
TCPP -			2.4	0.27	1.0	ng/l	1	05/14/18 20:19	
TDCPP			-	0.47	1.0	ng/l	1	05/14/18 20:19	ı
Trimethor			•	0.24	1.0	ng/l	1	05/30/18 22:03	•
minearop	hiiii		IND	0.27	1.0	119/1		55/55/10 22:55	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Project Number: VCEHD OWTS Study (LA0391)

Reported:

06/27/2018 15:41

Santa Barbara, CA 93101
Sample Results

Project Manager: Jared Ervin

2									
ample:	GW-A-02_180403						Sam	pled: 04/03/18 9:31 b	y Rebecca
	8D06080-08 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
CPs - Pharr	maceuticals by LC/MSMS-ESI+								
lethod: EP/	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0	12	Prepared: (04/24/18 10:31		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	05/30/18 22:19	
Amoxicilli	n		ND	2.0	10	ng/l	1	05/30/18 22:19	I
tenolol			ND	0.20	1.0	ng/l	1	05/30/18 22:19	
Atorvastat	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	05/30/18 22:19	
zithromy	ycin		ND	2.2	10	ng/l	1	05/30/18 22:19	
affeine			1.3	0.31	1.0	ng/l	1	05/30/18 22:19	
arbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 22:19	
iproflox	acin		1.8	1.4	5.0	ng/l	1	05/30/18 22:19	
otinine			ND	0.59	2.0	ng/l	1	05/30/18 22:19	
EET			1.1	0.060	1.0	ng/l	1	05/30/18 22:19	
iazepam	1		ND	0.14	1.0	ng/l	1	05/30/18 22:19	
luoxetine	e		ND	0.080	1.0	ng/l	1	05/30/18 22:19	
l eproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 20:36	
1ethadon	ne		ND	0.040	1.0	ng/l	1	05/30/18 22:19	
henytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 22:19	
rimidone	9		ND	0.60	1.0	ng/l	1	05/30/18 22:19	
ucralose	e		7.6	5.0	5.0	ng/l	1	05/30/18 22:19	
ulfameth	hoxazole		0.63	0.19	1.0	ng/l	1	05/30/18 22:19	
CEP			ND	0.34	1.0	ng/l	1	05/30/18 22:19	
CPP -			1.0	0.27	1.0	ng/l	1	05/14/18 20:36	
DCPP			2.5	0.47	1.0	ng/l	1	05/14/18 20:36	
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/30/18 22:19	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

ample:	GW-A-04_180403						Sami	pled: 04/03/18 9:59 b	v Reheccal
апріс.							Jann	pied. 04/03/10 3.33 b	y Nebeccai
Analyte	8D06080-09 (Water)		Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
-	maceuticals by LC/MSMS-ESI+							. •	•
lethod: EP/	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared: (04/24/18 10:31		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	05/30/18 23:09	
Amoxicilli	n		ND	2.0	10	ng/l	1	05/30/18 23:09	I-
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 23:09	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/30/18 23:09	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 23:09	
Caffeine			0.85	0.31	1.0	ng/l	1	05/30/18 23:09	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 23:09	
Ciproflox	acin		1.9	1.4	5.0	ng/l	1	05/30/18 23:09	
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 23:09	
DEET -			0.79	0.060	1.0	ng/l	1	05/30/18 23:09	
Diazepam	1		ND	0.14	1.0	ng/l	1	05/30/18 23:09	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	05/30/18 23:09	
Meproban	mate		ND	0.36	1.0	ng/l	1	05/14/18 21:25	
Methadon	ne		ND	0.040	1.0	ng/l	1	05/30/18 23:09	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 23:09	
Primidone)		ND	0.60	1.0	ng/l	1	05/30/18 23:09	
Sucralose)		ND	5.0	5.0	ng/l	1	05/30/18 23:09	
Sulfameth	hoxazole		0.55	0.19	1.0	ng/l	1	05/30/18 23:09	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 23:09	
ГСРР -			0.51	0.27	1.0	ng/l	1	05/14/18 21:25	
TDCPP			2.6	0.47	1.0	ng/l	1	05/14/18 21:25	
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/30/18 23:09	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

								(-	,
Sample:	GW-A-01_180403						Samp	oled: 04/03/18 10:30 b	y RebeccaL.
	8D06080-10 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared: (04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/30/18 23:25	
Amoxicilli	n		ND	2.0	10	ng/l	1	05/30/18 23:25	I-05
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 23:25	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/30/18 23:25	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 23:25	
Caffeine			0.70	0.31	1.0	ng/l	1	05/30/18 23:25	J
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 23:25	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/30/18 23:25	
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 23:25	
DEET -			0.90	0.060	1.0	ng/l	1	05/30/18 23:25	J
Diazepam	1		ND	0.14	1.0	ng/l	1	05/30/18 23:25	
Fluoxetine	9		ND	0.080	1.0	ng/l	1	05/30/18 23:25	
Meproban	mate		ND	0.36	1.0	ng/l	1	05/14/18 21:42	
Methadon	ne		ND	0.040	1.0	ng/l	1	05/30/18 23:25	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 23:25	
Primidone	•		ND	0.60	1.0	ng/l	1	05/30/18 23:25	
Sucralose	;		ND	5.0	5.0	ng/l	1	05/30/18 23:25	
Sulfameth	hoxazole		0.41	0.19	1.0	ng/l	1	05/30/18 23:25	J
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 23:25	
TCPP			1.9	0.27	1.0	ng/l	1	05/14/18 21:42	
TDCPP			2.2	0.47	1.0	ng/l	1	05/14/18 21:42	В
Trimethop	orim			0.24	1.0	ng/l	1	05/30/18 23:25	
mmemop	/IIII		IND	0.27	1.0	rig/i	'	00/00/10 20.20	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	GW-F-02_180403						Samp	oled: 04/03/18 11:17 b	y Rebeccal
	8D06080-11 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS()2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/30/18 23:42	
Amoxicillir	n		ND	2.0	10	ng/l	1	05/30/18 23:42	I-(
Atenolol			ND	0.20	1.0	ng/l	1	05/30/18 23:42	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/30/18 23:42	
Azithromy	cin		ND	2.2	10	ng/l	1	05/30/18 23:42	
Caffeine			1.9	0.31	1.0	ng/l	1	05/30/18 23:42	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/30/18 23:42	
Ciproflox	acin		4.2	1.4	5.0	ng/l	1	05/30/18 23:42	
Cotinine			ND	0.59	2.0	ng/l	1	05/30/18 23:42	
DEET -			0.77	0.060	1.0	ng/l	1	05/30/18 23:42	
Diazepam)		ND	0.14	1.0	ng/l	1	05/30/18 23:42	
Fluoxetine	3		ND	0.080	1.0	ng/l	1	05/30/18 23:42	
Meproban	mate		ND	0.36	1.0	ng/l	1	05/14/18 21:58	
Methadon	ne		ND	0.040	1.0	ng/l	1	05/30/18 23:42	
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	05/30/18 23:42	
Primidone	;		ND	0.60	1.0	ng/l	1	05/30/18 23:42	
Sucralose	:		ND	5.0	5.0	ng/l	1	05/30/18 23:42	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/30/18 23:42	
TCEP			ND	0.34	1.0	ng/l	1	05/30/18 23:42	
TCPP			ND	0.27	1.0	ng/l	1	05/14/18 21:58	
TDCPP			1.5	0.47	1.0	ng/l	1	05/14/18 21:58	
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/30/18 23:42	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample: SW-01-D_180403	Units	Samp	lled: 04/03/18 12:31 b	y RebeccaL.
	Units	Dil	Anahmad	
Analyte Result MDL MRL	Units	Dil	Amalamad	
			Analyzed	Qualifier
PCPs - Pharmaceuticals by LC/MSMS-ESI+				
Method: EPA 1694M-ESI+Batch ID: W8D1411Instr: LCMS02Prepared: 04/24/	/18 10:31		Analyst: kan	
Acetaminophen ND 1.4 20	ng/l	1	05/30/18 23:58	
Amoxicillin ND 2.0 10	ng/l	1	05/30/18 23:58	I-05
Atenolol ND 0.20 1.0	ng/l	1	05/30/18 23:58	
Atorvastatin ND 0.11 1.0	ng/l	1	05/30/18 23:58	
Azithromycin ND 2.2 10	ng/l	1	05/30/18 23:58	
Caffeine 12 0.31 1.0	ng/l	1	05/30/18 23:58	
Carbamazepine ND 0.080 1.0	ng/l	1	05/30/18 23:58	
Ciprofloxacin ND 1.4 5.0	ng/l	1	05/30/18 23:58	
Cotinine 0.71 0.59 2.0	ng/l	1	05/30/18 23:58	J
DEET 4.3 0.060 1.0	ng/l	1	05/30/18 23:58	
Diazepam	ng/l	1	05/30/18 23:58	
Fluoxetine ND 0.080 1.0	ng/l	1	05/30/18 23:58	
Meprobamate ND 0.36 1.0	ng/l	1	05/14/18 22:15	
Methadone ND 0.040 1.0	ng/l	1	05/30/18 23:58	
Phenytoin (Dilantin) 3.3 0.33 1.0	ng/l	1	05/30/18 23:58	
Primidone	ng/l	1	05/30/18 23:58	
Sucralose	ng/l	1	05/30/18 23:58	
Sulfamethoxazole ND 0.19 1.0	ng/l	1	05/30/18 23:58	
TCEP	ng/l	1	05/30/18 23:58	
TCPP	ng/l	1	05/14/18 22:15	
TDCPP 1.3 0.47 1.0	ng/l	1	05/14/18 22:15	В
Trimethoprim ND 0.24 1.0	ng/l	1	05/30/18 23:58	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampie i teedite							(-	ontinaca)
Sample:	GW-C-07_180403						Samp	oled: 04/03/18 13:19 b	y RebeccaL.
	8D06080-13 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/31/18 00:15	
Amoxicillir	n		ND	2.0	10	ng/l	1	05/31/18 00:15	I-05
Atenolol			ND	0.20	1.0	ng/l	1	05/31/18 00:15	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/31/18 00:15	
Azithromy	<i>r</i> cin		ND	2.2	10	ng/l	1	05/31/18 00:15	
Caffeine			1.4	0.31	1.0	ng/l	1	05/31/18 00:15	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/31/18 00:15	
Ciproflox	acin		2.3	1.4	5.0	ng/l	1	05/31/18 00:15	
Cotinine			ND	0.59	2.0	ng/l	1	05/31/18 00:15	
DEET -			0.63	0.060	1.0	ng/l	1	05/31/18 00:15	
Diazepam	1		ND	0.14	1.0	ng/l	1	05/31/18 00:15	
Fluoxetine	9		ND	0.080	1.0	ng/l	1	05/31/18 00:15	
Meproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 22:31	
Methadon	10		0.073	0.040	1.0	ng/l	1	05/31/18 00:15	J
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	05/31/18 00:15	
Primidone)		ND	0.60	1.0	ng/l	1	05/31/18 00:15	
Sucralose	:		ND	5.0	5.0	ng/l	1	05/31/18 00:15	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/31/18 00:15	
TCEP			ND	0.34	1.0	ng/l	1	05/31/18 00:15	
TCPP				0.27	1.0	ng/l	1	05/14/18 22:31	
TDCPP			***	0.47	1.0	ng/l	1	05/14/18 22:31	В
Trimethop	orim			0.24	1.0	ng/l	1	05/31/18 00:15	_

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

					Samp	oled: 04/03/18 13:37 b	y Rebeccal
	Result	MDL	MRL	Units	Dil	Analyzed	Qualific
Batch ID: W8D1411	Instr: LCMS	02	Prepared:	04/24/18 10:31		Analyst: kan	
	ND	1.4	20	ng/l	1	05/31/18 00:31	
	ND	2.0	10	ng/l	1	05/31/18 00:31	I-0
	ND	0.20	1.0	ng/l	1	05/31/18 00:31	
	ND	0.11	1.0	ng/l	1	05/31/18 00:31	
	ND	2.2	10	ng/l	1	05/31/18 00:31	
	2.4	0.31	1.0	ng/l	1	05/31/18 00:31	
	ND	0.080	1.0	ng/l	1	05/31/18 00:31	
	1.8	1.4	5.0	ng/l	1	05/31/18 00:31	
	ND	0.59	2.0	ng/l	1	05/31/18 00:31	
	0.66	0.060	1.0	ng/l	1	05/31/18 00:31	
	ND	0.14	1.0	ng/l	1	05/31/18 00:31	
	ND	0.080	1.0	ng/l	1	05/31/18 00:31	
	ND	0.36	1.0	ng/l	1	05/14/18 22:48	
	ND	0.040	1.0	ng/l	1	05/31/18 00:31	
	ND	0.33	1.0	ng/l	1	05/31/18 00:31	
	ND	0.60	1.0	ng/l	1	05/31/18 00:31	
	ND	5.0	5.0	ng/l	1	05/31/18 00:31	
	ND	0.19	1.0	ng/l	1	05/31/18 00:31	
	ND	0.34	1.0	-	1	05/31/18 00:31	
	4.4	0.27	1.0	-	1	05/14/18 22:48	
				· ·	1		
		· · · ·			•	33,, .0 ==.10	
		Batch ID: W8D1411	Batch ID: W8D1411 Instr: LCMS02 ND	Batch ID: W8D1411 Instr: LCMS02 Prepared: 4 ND 1.4 20 ND 2.0 10 ND 0.20 1.0 ND 0.11 1.0 ND 2.2 10 2.4 0.31 1.0 ND 0.080 1.0 ND 0.59 2.0 0.66 0.060 1.0 ND 0.080 1.0 ND 0.36 1.0 ND 0.36 1.0 ND 0.33 1.0 ND 0.60 1.0 ND 0.50 5.0 ND 0.19 1.0 ND 0.34 1.0 ND 0.34 1.0 4.4 0.27 1.0	Batch ID: W8D1411		Batch ID: W8D1411

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

								(-	,
Sample:	GW-B-03_180404						Samı	oled: 04/04/18 9:02 b	y RebeccaL.
	8D06080-15 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharn	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS	02	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/31/18 00:48	
Amoxicillir	n		ND	2.0	10	ng/l	1	05/31/18 00:48	I-05
Atenolol -			ND	0.20	1.0	ng/l	1	05/31/18 00:48	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/31/18 00:48	
Azithromy	cin		ND	2.2	10	ng/l	1	05/31/18 00:48	
Caffeine			1.6	0.31	1.0	ng/l	1	05/31/18 00:48	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/31/18 00:48	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/31/18 00:48	
Cotinine -			ND	0.59	2.0	ng/l	1	05/31/18 00:48	
DEET -			0.72	0.060	1.0	ng/l	1	05/31/18 00:48	
Diazepam	1		ND	0.14	1.0	ng/l	1	05/31/18 00:48	
Fluoxetine)		ND	0.080	1.0	ng/l	1	05/31/18 00:48	
Meproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 23:04	
Methadon	le		ND	0.040	1.0	ng/l	1	05/31/18 00:48	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	05/31/18 00:48	
Primidone	:		ND	0.60	1.0	ng/l	1	05/31/18 00:48	
Sucralose			ND	5.0	5.0	ng/l	1	05/31/18 00:48	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/31/18 00:48	
TCEP			ND	0.34	1.0	ng/l	1	05/31/18 00:48	
TCPP			3.6	0.27	1.0	ng/l	1	05/14/18 23:04	
TDCPP				0.47	1.0	ng/l	1	05/14/18 23:04	E
Trimethop				0.24	1.0	ng/l	1	05/31/18 00:48	_
miletiop			מוו	0.27	1.0	119/1	'	33/31/10 00.40	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

								`	,
Sample:	GW-C-BK-06_180404						Samp	oled: 04/04/18 10:30 b	y RebeccaL
	8D06080-16 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PPCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	PA 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS	02	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 19:41	
Amoxicilli	in		ND	2.0	10	ng/l	1	06/03/18 19:41	1-08
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 19:41	
Atorvasta	atin		ND	0.11	1.0	ng/l	1	06/03/18 19:41	
Azithrom	ycin		ND	2.2	10	ng/l	1	06/03/18 19:41	
Caffeine			1.8	0.31	1.0	ng/l	1	06/03/18 19:41	
Carbama	zepine		0.30	0.080	1.0	ng/l	1	06/03/18 19:41	
Ciproflox	acin		ND	1.4	5.0	ng/l	1	06/03/18 19:41	
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 19:41	
DEET -			2.4	0.060	1.0	ng/l	1	06/03/18 19:41	
Diazepan	n		ND	0.14	1.0	ng/l	1	06/03/18 19:41	
Fluoxetin	e		ND	0.080	1.0	ng/l	1	06/03/18 19:41	
Meprobai	mate		ND	0.36	1.0	ng/l	1	06/03/18 19:41	
Methador	ne		ND	0.040	1.0	ng/l	1	06/03/18 19:41	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 19:41	
Primidone	e		ND	0.60	1.0	ng/l	1	06/03/18 19:41	
Sucralose	e		ND	5.0	5.0	ng/l	1	06/01/18 15:25	
Sulfametl	hoxazole		ND	0.19	1.0	ng/l	1	06/03/18 19:41	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 19:41	
TCPP			ND	0.27	1.0	ng/l	1	06/03/18 19:41	
TDCPP			ND	0.47	1.0	ng/l	1	06/01/18 15:25	
Trimetho	prim		ND	0.24	1.0	ng/l	1	06/03/18 19:41	
	r		.15	· ·		a,.	•	23,00,.0	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	mpie i teedite							(0	ontinucu,
Sample:	GW-D-07_180404						Samp	oled: 04/04/18 10:55 b	y RebeccaL.
	8D06080-17 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharm	aceuticals by LC/MSMS-ESI+								
Method: EPA	1694M-ESI+	Batch ID: W8D1530	Instr: LCMS	02	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamino	phen		ND	1.4	20	ng/l	1	06/03/18 19:58	
Amoxicillin			ND	2.0	10	ng/l	1	06/03/18 19:58	I-05
Atenolol -			ND	0.20	1.0	ng/l	1	06/03/18 19:58	
Atorvastati	n		ND	0.11	1.0	ng/l	1	06/03/18 19:58	
Azithromyo	sin		ND	2.2	10	ng/l	1	06/03/18 19:58	
Caffeine			1.0	0.31	1.0	ng/l	1	06/03/18 19:58	
Carbamaze	epine		ND	0.080	1.0	ng/l	1	06/03/18 19:58	
Ciprofloxac	sin		ND	1.4	5.0	ng/l	1	06/03/18 19:58	
Cotinine -			ND	0.59	2.0	ng/l	1	06/03/18 19:58	
DEET -			0.28	0.060	1.0	ng/l	1	06/03/18 19:58	,
Diazepam			ND	0.14	1.0	ng/l	1	06/03/18 19:58	
Fluoxetine			ND	0.080	1.0	ng/l	1	06/03/18 19:58	
Meprobam	ate		ND	0.36	1.0	ng/l	1	06/03/18 19:58	
Methadone)		ND	0.040	1.0	ng/l	1	06/03/18 19:58	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 19:58	
Primidone			ND	0.60	1.0	ng/l	1	06/03/18 19:58	
Sucralose			ND	5.0	5.0	ng/l	1	06/01/18 15:41	
Sulfameth	oxazole		0.90	0.19	1.0	ng/l	1	06/03/18 19:58	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 19:58	
				0.27	1.0	ng/l	1	06/03/18 19:58	
TDCPP				0.47	1.0	ng/l	1	06/01/18 15:41	
Trimethopr				0.47	1.0	ng/l	1	06/03/18 19:58	
minemopi			IND	0.27	1.0	119/1	'	33/03/10 13.30	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	SW-03-U_180404						Samp	oled: 04/04/18 12:11 b	y Rebecca
	8D06080-18 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
PCPs - Pharm	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0	12	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	05/31/18 01:04	
Amoxicillir	n		ND	2.0	10	ng/l	1	05/31/18 01:04	1-
Atenolol -			ND	0.20	1.0	ng/l	1	05/31/18 01:04	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/31/18 01:04	
Azithromy	rcin		ND	2.2	10	ng/l	1	05/31/18 01:04	
Caffeine			10	0.31	1.0	ng/l	1	05/31/18 01:04	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/31/18 01:04	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/31/18 01:04	
Cotinine			0.66	0.59	2.0	ng/l	1	05/31/18 01:04	
DEET -			2.7	0.060	1.0	ng/l	1	05/31/18 01:04	
Diazepam	1		ND	0.14	1.0	ng/l	1	05/31/18 01:04	
Fluoxetine)		ND	0.080	1.0	ng/l	1	05/31/18 01:04	
Meproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 23:21	
Methadon	ie		ND	0.040	1.0	ng/l	1	05/31/18 01:04	
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	05/31/18 01:04	
Primidone	;		ND	0.60	1.0	ng/l	1	05/31/18 01:04	
Sucralose			ND	5.0	5.0	ng/l	1	05/31/18 01:04	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/31/18 01:04	
TCEP			ND	0.34	1.0	ng/l	1	05/31/18 01:04	
TCPP			6.2	0.27	1.0	ng/l	1	05/14/18 23:21	
TDCPP				0.47	1.0	ng/l	1	05/14/18 23:21	
Trimethop			0.0	0.24	1.0	ng/l	1	05/31/18 01:04	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ample recate						(Continue				
Sample:	GW-A-07_180404						Samp	oled: 04/04/18 12:56 b	y Rebeccal		
	8D06080-19 (Water)										
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi		
PCPs - Pharr	maceuticals by LC/MSMS-ESI+										
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared: (04/24/18 10:31		Analyst: kan			
Acetamino	ophen		ND	1.4	20	ng/l	1	05/31/18 01:21			
Amoxicillir	n		ND	2.0	10	ng/l	1	05/31/18 01:21	I-C		
Atenolol -			ND	0.20	1.0	ng/l	1	05/31/18 01:21			
Atorvastat	tin		ND	0.11	1.0	ng/l	1	05/31/18 01:21			
Azithromy	cin		ND	2.2	10	ng/l	1	05/31/18 01:21			
Caffeine			1.7	0.31	1.0	ng/l	1	05/31/18 01:21			
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	05/31/18 01:21			
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	05/31/18 01:21			
Cotinine			ND	0.59	2.0	ng/l	1	05/31/18 01:21			
DEET -			0.77	0.060	1.0	ng/l	1	05/31/18 01:21			
Diazepam	1		ND	0.14	1.0	ng/l	1	05/31/18 01:21			
Fluoxetine	e		ND	0.080	1.0	ng/l	1	05/31/18 01:21			
Meproban	nate		ND	0.36	1.0	ng/l	1	05/14/18 23:37			
Methadon	ne		ND	0.040	1.0	ng/l	1	05/31/18 01:21			
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	05/31/18 01:21			
Primidone	3		ND	0.60	1.0	ng/l	1	05/31/18 01:21			
Sucralose)		ND	5.0	5.0	ng/l	1	05/31/18 01:21			
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	05/31/18 01:21			
TCEP			ND	0.34	1.0	ng/l	1	05/31/18 01:21			
TCPP -			4.7	0.27	1.0	ng/l	1	05/14/18 23:37			
TDCPP			2.5	0.47	1.0	ng/l	1	05/14/18 23:37			
Trimethop	orim		ND	0.24	1.0	ng/l	1	05/31/18 01:21			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	SW-02-D_180404						Samp	oled: 04/04/18 13:27 k	y Rebeccal
	8D06080-20 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
CPs - Pharm	naceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1411	Instr: LCMS0)2	Prepared:	04/24/18 10:31		Analyst: kan	
Acetamino	phen		ND	1.4	20	ng/l	1	05/31/18 01:37	
Amoxicillin	1		ND	2.0	10	ng/l	1	05/31/18 01:37	I-C
Atenolol -			ND	0.20	1.0	ng/l	1	05/31/18 01:37	
Atorvastati	in		ND	0.11	1.0	ng/l	1	05/31/18 01:37	
Azithromy	cin		ND	2.2	10	ng/l	1	05/31/18 01:37	
Caffeine			18	0.31	1.0	ng/l	1	05/31/18 01:37	
Carbamaz	epine		ND	0.080	1.0	ng/l	1	05/31/18 01:37	
Ciprofloxa	cin		ND	1.4	5.0	ng/l	1	05/31/18 01:37	
Cotinine			0.62	0.59	2.0	ng/l	1	05/31/18 01:37	
DEET -			3.5	0.060	1.0	ng/l	1	05/31/18 01:37	
Diazepam			ND	0.14	1.0	ng/l	1	05/31/18 01:37	
Fluoxetine			ND	0.080	1.0	ng/l	1	05/31/18 01:37	
Meprobam	nate		ND	0.36	1.0	ng/l	1	05/14/18 23:54	
Methadone	e		ND	0.040	1.0	ng/l	1	05/31/18 01:37	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	05/31/18 01:37	
Primidone			ND	0.60	1.0	ng/l	1	05/31/18 01:37	
Sucralose			ND	5.0	5.0	ng/l	1	05/31/18 01:37	
Sulfametho	oxazole		ND	0.19	1.0	ng/l	1	05/31/18 01:37	
TCEP			ND	0.34	1.0	ng/l	1	05/31/18 01:37	
TCPP -			2.8	0.27	1.0	ng/l	1	05/14/18 23:54	
TDCPP			3.8	0.47	1.0	ng/l	1	05/14/18 23:54	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampie i tecane					(Sontinued)					
Sample:	SW-02-U_180405						Sam	pled: 04/05/18 9:38 b	y RebeccaL.		
	8D06080-21 (Water)										
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier		
PCPs - Phar	maceuticals by LC/MSMS-ESI+										
Method: EP	PA 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS0)2	Prepared:	04/25/18 13:06		Analyst: kan			
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 20:14			
Amoxicilli	in		ND	2.0	10	ng/l	1	06/03/18 20:14	I-05		
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 20:14			
Atorvasta	itin		ND	0.11	1.0	ng/l	1	06/03/18 20:14			
Azithromy	ycin		ND	2.2	10	ng/l	1	06/03/18 20:14			
Caffeine			17	0.31	1.0	ng/l	1	06/03/18 20:14			
Carbama	zepine		ND	0.080	1.0	ng/l	1	06/03/18 20:14			
Ciproflox	racin		1.5	1.4	5.0	ng/l	1	06/03/18 20:14	J		
Cotinine			0.88	0.59	2.0	ng/l	1	06/03/18 20:14	J		
DEET -			3.2	0.060	1.0	ng/l	1	06/03/18 20:14			
Diazepan	n		ND	0.14	1.0	ng/l	1	06/03/18 20:14			
Fluoxetin	e		ND	0.080	1.0	ng/l	1	06/03/18 20:14			
Meprobar	mate		ND	0.36	1.0	ng/l	1	06/03/18 20:14			
Methador	ne		ND	0.040	1.0	ng/l	1	06/03/18 20:14			
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 20:14			
Primidone	e		ND	0.60	1.0	ng/l	1	06/03/18 20:14			
Sucralose	e		ND	5.0	5.0	ng/l	1	06/01/18 15:58			
Sulfameth	hoxazole		ND	0.19	1.0	ng/l	1	06/03/18 20:14			
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 20:14			
			ND	0.27	1.0	ng/l	1	06/03/18 20:14			
TDCPP				0.47	1.0	ng/l	1	06/01/18 15:58			
Trimethor				0.47	1.0	ng/l	1	06/03/18 20:14			
mineuop	yını		IND	0.27	1.0	119/1	'	00/00/10 20.14			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	GW-D-05_180405						Samp	oled: 04/05/18 11:02 b	y Rebeccal
	8D06080-22 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP.	A 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS0)2	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 20:31	
Amoxicilli	n		ND	2.0	10	ng/l	1	06/03/18 20:31	I-C
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 20:31	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	06/03/18 20:31	
Azithromy	ycin		ND	2.2	10	ng/l	1	06/03/18 20:31	
Caffeine			1.5	0.31	1.0	ng/l	1	06/03/18 20:31	
Carbama	zepine		ND	0.080	1.0	ng/l	1	06/03/18 20:31	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	06/03/18 20:31	
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 20:31	
DEET -			0.28	0.060	1.0	ng/l	1	06/03/18 20:31	
Diazepam	n		ND	0.14	1.0	ng/l	1	06/03/18 20:31	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	06/03/18 20:31	
Meprobar	mate		ND	0.36	1.0	ng/l	1	06/03/18 20:31	
Methador	ne		ND	0.040	1.0	ng/l	1	06/03/18 20:31	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 20:31	
Primidone	9		ND	0.60	1.0	ng/l	1	06/03/18 20:31	
Sucralos	e		7.2	5.0	5.0	ng/l	1	06/01/18 16:14	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	06/03/18 20:31	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 20:31	
TCPP			ND	0.27	1.0	ng/l	1	06/03/18 20:31	
TDCPP			ND	0.47	1.0	ng/l	1	06/01/18 16:14	
Trimethop	orim		ND	0.24	1.0	ng/l	1	06/03/18 20:31	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ample results							(-	ontinueu)
Sample:	GW-D-05_180405_DUP						Samp	oled: 04/05/18 11:02 b	y RebeccaL.
	8D06080-23 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS	02	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 20:47	
Amoxicilli	n		ND	2.0	10	ng/l	1	06/03/18 20:47	I-05
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 20:47	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	06/03/18 20:47	
Azithrom	ycin		5.1	2.2	10	ng/l	1	06/03/18 20:47	J
Caffeine			ND	0.31	1.0	ng/l	1	06/03/18 20:47	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	06/03/18 20:47	
Ciproflox	acin		31	1.4	5.0	ng/l	1	06/03/18 20:47	В
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 20:47	
DEET -			0.26	0.060	1.0	ng/l	1	06/03/18 20:47	J
Diazepam]		ND	0.14	1.0	ng/l	1	06/03/18 20:47	
Fluoxetin	e		1.3	0.080	1.0	ng/l	1	06/03/18 20:47	
Meproban	mate		ND	0.36	1.0	ng/l	1	06/03/18 20:47	
Methador	ne · · · · · · · · · · · · · · · · · · ·		0.41	0.040	1.0	ng/l	1	06/03/18 20:47	J
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 20:47	
Primidone)		ND	0.60	1.0	ng/l	1	06/03/18 20:47	
Sucralose)		ND	5.0	5.0	ng/l	1	06/01/18 16:31	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	06/03/18 20:47	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 20:47	
TCPP -			2.6	0.27	1.0	ng/l	1	06/03/18 20:47	В
TDCPP			2.9	0.47	1.0	ng/l	1	06/01/18 16:31	
Trimethop	orim		ND	0.24	1.0	ng/l	1	06/03/18 20:47	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

3

Sample Results

	<u> </u>							`	,
Sample:	GW-0-02_180405						Samp	oled: 04/05/18 12:45 b	y RebeccaL.
	8D06080-24 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS0	02	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 21:04	
Amoxicilli	n		ND	2.0	10	ng/l	1	06/03/18 21:04	I-05
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 21:04	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	06/03/18 21:04	
Azithrom	ycin		3.4	2.2	10	ng/l	1	06/03/18 21:04	J
Caffeine			0.46	0.31	1.0	ng/l	1	06/03/18 21:04	J
Carbama	zepine		ND	0.080	1.0	ng/l	1	06/03/18 21:04	
Ciproflox	acin		6.9	1.4	5.0	ng/l	1	06/03/18 21:04	В
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 21:04	
DEET -			0.62	0.060	1.0	ng/l	1	06/03/18 21:04	J
Diazepan	n		0.32	0.14	1.0	ng/l	1	06/03/18 21:04	J
Fluoxetin	le		3.0	0.080	1.0	ng/l	1	06/03/18 21:04	
Meprobar	mate		ND	0.36	1.0	ng/l	1	06/03/18 21:04	
Methador	ne		1.8	0.040	1.0	ng/l	1	06/03/18 21:04	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 21:04	
Primidone	3		ND	0.60	1.0	ng/l	1	06/03/18 21:04	
Sucralos	e		42	5.0	5.0	ng/l	1	06/01/18 16:47	
Sulfameti	hoxazole		3.8	0.19	1.0	ng/l	1	06/03/18 21:04	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 21:04	
				0.27	1.0	ng/l	1	06/03/18 21:04	
TDCPP			ND	0.47	1.0	ng/l	1	06/01/18 16:47	
Trimetho	prim		1.2	0.24	1.0	ng/l	1	06/03/18 21:04	
	In				***	٠٠٠ق٠٠	•	=	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

Sample:	GW-B-04_180405						Samp	oled: 04/05/18 14:06 b	y Rebecca
	8D06080-25 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualif
CPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS0	12	Prepared: (04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 21:20	
Amoxicilli	n		ND	2.0	10	ng/l	1	06/03/18 21:20	
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 21:20	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	06/03/18 21:20	
Azithromy	cin		ND	2.2	10	ng/l	1	06/03/18 21:20	
Caffeine			ND	0.31	1.0	ng/l	1	06/03/18 21:20	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	06/03/18 21:20	
Ciproflox	acin		1.6	1.4	5.0	ng/l	1	06/03/18 21:20	
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 21:20	
DEET -			1.4	0.060	1.0	ng/l	1	06/03/18 21:20	
Diazepam	1		ND	0.14	1.0	ng/l	1	06/03/18 21:20	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	06/03/18 21:20	
Meproban	mate		ND	0.36	1.0	ng/l	1	06/03/18 21:20	
Methadon	ne		ND	0.040	1.0	ng/l	1	06/03/18 21:20	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 21:20	
Primidone	e		ND	0.60	1.0	ng/l	1	06/03/18 21:20	
Sucralose	e		5.8	5.0	5.0	ng/l	1	06/01/18 17:04	
Sulfameti	hoxazole		1.1	0.19	1.0	ng/l	1	06/03/18 21:20	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 21:20	
TCPP -			4.4	0.27	1.0	ng/l	1	06/03/18 21:20	
TDCPP			5.3	0.47	1.0	ng/l	1	06/01/18 17:04	
Trimethop	orim		ND	0.24	1.0	ng/l	1	06/03/18 21:20	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

GW-B-04_180405_EQ								
						Samp	oled: 04/05/18 14:06 b	y RebeccaL.
8D06080-26 (Water)								
		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
ceuticals by LC/MSMS-ESI+								
694M-ESI+	Batch ID: W8D1530	Instr: LCMS	02	Prepared:	04/25/18 13:06		Analyst: kan	
nen		ND	1.4	20	ng/l	1	06/03/18 21:37	
		ND	2.0	10	ng/l	1	06/03/18 21:37	
		ND	0.20	1.0	ng/l	1	06/03/18 21:37	
		ND	0.11	1.0	ng/l	1	06/03/18 21:37	
		ND	2.2	10	ng/l	1	06/03/18 21:37	
		16	0.31	1.0	ng/l	1	06/03/18 21:37	
ine		0.25	0.080	1.0	ng/l	1	06/03/18 21:37	J
n		1.7	1.4	5.0	ng/l	1	06/03/18 21:37	J
		ND	0.59	2.0	ng/l	1	06/03/18 21:37	
		1.0	0.060	1.0	ng/l	1	06/03/18 21:37	
		ND	0.14	1.0	ng/l	1	06/03/18 21:37	
		ND	0.080	1.0	ng/l	1	06/03/18 21:37	
e		ND	0.36	1.0	ng/l	1	06/03/18 21:37	
		ND	0.040	1.0	ng/l	1	06/03/18 21:37	
vilantin)		ND	0.33	1.0	ng/l	1	06/03/18 21:37	
		ND	0.60	1.0	ng/l	1	06/03/18 21:37	
		ND	5.0	5.0	ng/l	1	06/01/18 17:20	
azole		ND	0.19	1.0	-	1	06/03/18 21:37	
		ND	0.34	1.0	_	1	06/03/18 21:37	
					ū	1		В
					· ·			_
					ū			
e e e	ine ine ine ine azole	ine n ine n azole	Result R	Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result MDL Result Result MDL Result Result MDL Result Result Result Result MDL Result Result MDL MRL MRL	New New	Result MDL MRL Units Dil Result MRL Units Dil		

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Sample Results

	ampio i todano							(0	Jonana Ca
Sample:	GW-G-01_180406						Sam	pled: 04/06/18 9:50 b	y RebeccaL
	8D06080-27 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8D1530	Instr: LCMS0)2	Prepared:	04/25/18 13:06		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	06/03/18 21:53	
Amoxicilli	n		ND	2.0	10	ng/l	1	06/03/18 21:53	
Atenolol			ND	0.20	1.0	ng/l	1	06/03/18 21:53	
Atorvasta	itin		ND	0.11	1.0	ng/l	1	06/03/18 21:53	
Azithromy	ycin		ND	2.2	10	ng/l	1	06/03/18 21:53	
Caffeine			0.44	0.31	1.0	ng/l	1	06/03/18 21:53	
Carbama	zepine		0.29	0.080	1.0	ng/l	1	06/03/18 21:53	
Ciproflox	racin		1.6	1.4	5.0	ng/l	1	06/03/18 21:53	
Cotinine			ND	0.59	2.0	ng/l	1	06/03/18 21:53	
DEET -			0.58	0.060	1.0	ng/l	1	06/03/18 21:53	
Diazepan	n		ND	0.14	1.0	ng/l	1	06/03/18 21:53	
Fluoxetin	e		ND	0.080	1.0	ng/l	1	06/03/18 21:53	
Meprobar	mate		ND	0.36	1.0	ng/l	1	06/03/18 21:53	
Methador	ne		ND	0.040	1.0	ng/l	1	06/03/18 21:53	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	06/03/18 21:53	
Primidone	e		ND	0.60	1.0	ng/l	1	06/03/18 21:53	
Sucralose	e		ND	5.0	5.0	ng/l	1	06/01/18 17:37	
Sulfameth	hoxazole		ND	0.19	1.0	ng/l	1	06/03/18 21:53	
TCEP			ND	0.34	1.0	ng/l	1	06/03/18 21:53	
TCPP			2.8	0.27	1.0	ng/l	1	06/03/18 21:53	
TDCPP				0.47	1.0	ng/l	1	06/01/18 17:37	
Trimethor			•	0.24	1.0	ng/l	1	06/03/18 21:53	
	VIIII		110	0.27	1.0	119/1		33/00/10 21.00	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VCEHD OWTS Study (LA0391)

Reported:

(Continued)

06/27/2018 15:41

3

Sample Results

								, -	,
Sample:	GW-G-01_180406						Samp	oled: 04/06/18 9:50 by	/ Rebecca L
	8D06080-28 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
nions by IC, EF	PA Method 300.0								
Method: EPA 3	00.0	Batch ID: W8D0426	Instr: LC12		Prepared: 0	4/07/18 09:34		Analyst: jan	
Nitrate as N			4800	20	110	ug/l	1	04/07/18 13:22	
Nitrite as N				20	150	ug/l	1	04/07/18 13:22	
onventional Ch	emistry/Physical Parameters by	APHA/EPA/ASTM Methods							
Method: _Vario	ous	Batch ID: [CALC]	Instr: [CALC]		Prepared: 0	4/12/18 17:59		Analyst: ymt	
Nitrogen, To	tal		4.9		0.20	mg/l	1	04/16/18 12:27	
Method: EPA 3	50.1	Batch ID: W8D0487	Instr: Inst		Prepared: 0	4/09/18 13:50		Analyst: mnq	
Ammonia as	s N		0.056	0.048	0.10	mg/l	1	04/09/18 18:31	
Method: EPA 3	51.2	Batch ID: W8D0788	Instr: AA06		Prepared: 0	4/12/18 17:59		Analyst: ymt	
TKN			ND	0.050	0.10	mg/l	1	04/16/18 12:27	
Method: EPA 3	53.2	Batch ID: W8D0527	Instr: AA01		Prepared: 0	4/10/18 08:21		Analyst: AJK	
NO2+NO3 as			4900	83	200	ug/l		04/10/18 14:54	

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Ouglity Control Results

Anions by IC, EPA Method 300.0											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
Batch: W8D0426 - EPA 300.0											
Blank (W8D0426-BLK1)					Prepared & A	nalyzed: 04/	07/18				
Nitrate as N	ND	20	110	ug/l	•	•					
Nitrite as N	- 23.0	20	150	ug/l							B-07, .
LCS (W8D0426-BS1)					Prepared & A	nalyzed: 04/	07/18				
Nitrate as N	- 1960	20	110	ug/l	2000		98	90-110			
Nitrite as N	- 2000	20	150	ug/l	2000		100	90-110			
Matrix Spike (W8D0426-MS1)	Sourc	e: 8D0507	8-01		Prepared & A	nalyzed: 04/	07/18				
Nitrate as N	20500	200	1100	ug/l	20000	912	98	84-115			
Nitrite as N	20200	200	1500	ug/l	20000	ND	101	87-108			
Matrix Spike Dup (W8D0426-MSD1)		e: 8D0507			Prepared & A	•					
Nitrate as N	20600	200	1100	ug/l	20000	912	99	84-115	0.7	20	
Nitrite as N	20400	200	1500	ug/l	20000	ND	102	87-108	0.9	20	
Conventional Chemistry/Physical Parameters by APHA/	EPA/AST	M Method	ds								
					Spike	Source		%REC		RPD	
Analyte Batch: W8D0487 - EPA 350.1	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
					D		00/10				
Blank (W8D0487-BLK1) Ammonia as N	ND	0.048	0.10	mg/l	Prepared & A	nalyzed: 04/	09/18				
				J							
LCS (W8D0487-BS1) Ammonia as N	0.260	0.048	0.10	mg/l	Prepared & A 0.250	nalyzed: 04/	09/18 104	90-110			
				3,							
Matrix Spike (W8D0487-MS1) Ammonia as N	Source 0.318	e: 8D0608 0.048	0-28 0.10	mg/l	Prepared & A 0.250	nalyzed: 04/ 0.0557	09/18 105	90-110			
				g/i				00 110			
Matrix Spike Dup (W8D0487-MSD1) Ammonia as N	Source 0.317	ce: 8D0608 0.048	0-28 0.10	mg/l	Prepared & A 0.250	nalyzed: 04/ 0.0557	09/18 104	90-110	0.3	15	
	0.517	0.040	0.10	mg/i	0.230	0.0007	104	30-110	0.5	10	
Batch: W8D0527 - EPA 353.2											
Blank (W8D0527-BLK1)	ND	0.0	200		Prepared & A	nalyzed: 04/	10/18				
NO2+NO3 as N	· ND	83	200	ug/l							
LCS (W8D0527-BS1)					Prepared & A	nalyzed: 04/					
NO2+NO3 as N	985	83	200	ug/l	1000		98	90-110			
Matrix Spike (W8D0527-MS1)		e: 8D0906			Prepared & A	-	10/18				
NO2+NO3 as N	- 7030	83	200	ug/l	2000	5140	94	90-110			
Matrix Spike (W8D0527-MS2)	Sourc	e: 8D0907	1-11		Prepared & A	nalyzed: 04/	10/18				
NO2+NO3 as N	4030	83	200	ug/l	2000	2080	98	90-110			
Matrix Spike Dup (W8D0527-MSD1)	Sourc	e: 8D0906	9-01		Prepared & A	nalyzed: 04/	10/18				
NO2+NO3 as N	- 7080	83	200	ug/l	2000	5140	97	90-110	0.7	20	
Matrix Spike Dup (W8D0527-MSD2)	Source	e: 8D0907	1-11		Prepared & A	nalyzed: 04/	10/18				
NO2+NO3 as N	4030	83	200	ug/l	2000	2080	98	90-110	0	20	
Batch: W8D0788 - EPA 351.2											

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Reported:

06/27/2018 15:41

Quality Control Results

(Continued)

Conventional Chemistry/Physical Parameters by APH	IA/EPA/AST	M Method	ls (Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W8D0788 - EPA 351.2 (Continued)											
Blank (W8D0788-BLK1)				Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	ND	0.050	0.10	mg/l							
Blank (W8D0788-BLK2)				Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	ND	0.050	0.10	mg/l		•					
LCS (W8D0788-BS1)				Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.03	0.050	0.10	mg/l	1.00		103	90-110			
LCS (W8D0788-BS2)				Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.04	0.050	0.10	mg/l	1.00		104	90-110			
Matrix Spike (W8D0788-MS1)	Sourc	e: 8D11053	3-01	Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.35	0.050	0.10	mg/l	1.00	0.329	102	90-110			
Matrix Spike (W8D0788-MS2)	Sourc	e: 8D11053	3-02	Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.33	0.050	0.10	mg/l	1.00	0.307	103	90-110			
Matrix Spike Dup (W8D0788-MSD1)	Sourc	e: 8D11053	3-01	Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.44	0.050	0.10	mg/l	1.00	0.329	111	90-110	6	10	MS-01
Matrix Spike Dup (W8D0788-MSD2)	Sourc	e: 8D11053	3-02	Pre	pared: 04/12/1	8 Analyzed:	04/16/18	3			
TKN	1.38	0.050	0.10	mg/l	1.00	0.307	107	90-110	3	10	

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS-ESI+										
				Spike	Source		%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
rtch: W8D1411 - EPA 1694M-ESI+										
Blank (W8D1411-BLK1) Meprobamate ND	0.36	1.0	Pre ng/l	pared: 04/24/1	18 Analyzed:	05/14/18	3			
TCPP	0.27	1.0	ng/l							
TDCPP 4.01	0.47	1.0	ng/l							
N. J. GUODALLA DIVO			_	1.04/04/		05/20/4				
Blank (W8D1411-BLK2) Acetaminophen ND	1.4	20	ng/l	pared: 04/24/1	18 Analyzed:	05/30/18	3			QC-
Amoxicillin ND	2.0	10	ng/l							QC-
AtenololND	0.20	1.0	ng/l							QC-
Atorvastatin ND	0.11	1.0	ng/l							QC-
Azithromycin ND	2.2	10	ng/l							QC-
Caffeine 0.884	0.31	1.0	ng/l							QC-2,
Carbamazepine ND	0.080	1.0	ng/l							QC
Ciprofloxacin 10.3	1.4	5.0	ng/l							B-06, QC
Cotinine	0.59	2.0	ng/l							QC-2
DEET 0.611	0.060	1.0	ng/l							QC-2
DiazepamND	0.14	1.0	ng/l							QC
Fluoxetine ND	0.080	1.0	ng/l							QC
Methadone ND	0.040	1.0	ng/l							QC
Phenytoin (Dilantin)	0.33	1.0	ng/l							QC
PrimidoneND	0.60	1.0	ng/l							QC
Sulfamethoxazole	0.19	1.0	ng/l							QC
TCEPND	0.34	1.0	ng/l							QC
TrimethoprimND	0.24	1.0	ng/l							QC
CS (W8D1411-BS1)			Dro	pared: 04/24/1	IO Analyzada	OE /14/19	,			
Meprobamate 17.4	0.36	1.0	ng/l	10.0	10 Allalyzeu.	174	11-166			Q-
TCPP	0.27	1.0	ng/l	10.0		85	24-149			
TDCPP	0.47	1.0	ng/l	10.0		151	20-158			
CS (W8D1411-BS2)			Pre	pared: 04/24/1	I8 Analyzed:	05/30/18	}			
Acetaminophen 219	1.4	20	ng/l	200		110	66-156			QC
Amoxicillin	2.0	10	ng/l	100		175	14-167			Q-08, QC
Atenolol	0.20	1.0	ng/l	10.0		105	56-164			QC
Atorvastatin 6.80	0.11	1.0	ng/l	10.0		68	0.1-173			QC
Azithromycin 91.3	2.2	10	ng/l	100		91	52-166			QC
Caffeine 11.4	0.31	1.0	ng/l	10.0		114	55-152			QC
Carbamazepine 10.0	0.080	1.0	ng/l	10.0		100	60-135			QC
Ciprofloxacin 30.8	1.4	5.0	ng/l	50.0		62	51-168			QC
Cotinine 10.9	0.59	2.0	ng/l	10.0		109	68-155			QC
DEET 11.3	0.060	1.0	ng/l	10.0		113	45-135			QC-
006080										Page 33 o

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)											
Analyte F	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifi
ttch: W8D1411 - EPA 1694M-ESI+ (Continued)	resuit	MDL	IVIKL	Offics	Levei	Result	/OKEC	Lillits	KPD	LIIIII	Qualifi
.CS (W8D1411-BS2)				Dro	pared: 04/24/	O Analuzadi	0E/20/1	0			
	9.72	0.14	1.0	ng/l	10.0	io Allalyzeu.	97	58-127			QC-
Fluoxetine	11.5	0.080	1.0	ng/l	10.0		115	55-150			QC
Methadone	11.5	0.040	1.0	ng/l	10.0		115	62-137			QC
Phenytoin (Dilantin)	10.0	0.33	1.0	ng/l	10.0		100	69-138			QC
Primidone	11.8	0.60	1.0	ng/l	10.0		118	54-147			QC
Sulfamethoxazole	11.3	0.19	1.0	ng/l	10.0		113	60-133			QC
TCEP	8.22	0.34	1.0	ng/l	10.0		82	25-149			QC
Trimethoprim	12.0	0.24	1.0	ng/l	10.0		120	67-139			QC
.CS Dup (W8D1411-BSD1)				Pre	pared: 04/24/	8 Analyzed:	05/14/1	8			
Meprobamate	25.8	0.36	1.0	ng/l	10.0	•	258	11-166	39	30	Q-(
TCPP	14.5	0.27	1.0	ng/l	10.0		145	24-149	52	30	Q-1
TDCPP	15.1	0.47	1.0	ng/l	10.0		151	20-158	0	30	
LCS Dup (W8D1411-BSD2)				Pre	pared: 04/24/	8 Analyzed:	05/30/1	8			
Acetaminophen	269	1.4	20	ng/l	200		134	66-156	20	30	QC
Amoxicillin	343	2.0	10	ng/l	100		343	14-167	65	30	Q-08, QC
Atenolol	13.6	0.20	1.0	ng/l	10.0		136	56-164	26	30	QC
Atorvastatin	3.10	0.11	1.0	ng/l	10.0		31	0.1-173	75	30	Q-12, QC
Azithromycin	98.9	2.2	10	ng/l	100		99	52-166	8	30	QC
Caffeine	10.6	0.31	1.0	ng/l	10.0		106	55-152	7	30	QC
Carbamazepine	12.9	0.080	1.0	ng/l	10.0		129	60-135	25	30	QC
Ciprofloxacin	32.1	1.4	5.0	ng/l	50.0		64	51-168	4	30	QC
Cotinine	15.4	0.59	2.0	ng/l	10.0		154	68-155	34	30	Q-12, QC
	11.2	0.060	1.0	ng/l	10.0		112	45-135	0.9	30	QC
Diazepam	9.05	0.14	1.0	ng/l	10.0		90	58-127	7	30	QC
Fluoxetine	9.51	0.080	1.0	ng/l	10.0		95	55-150	19	30	QC
Methadone	10.8	0.040	1.0	ng/l	10.0		108	62-137	6	30	QC
Phenytoin (Dilantin)	11.1	0.33	1.0	ng/l	10.0		111	69-138	10	30	QC
Primidone	12.9	0.60	1.0	ng/l	10.0		129	54-147	9	30	QC
Sulfamethoxazole	11.5	0.19	1.0	ng/l	10.0		115	60-133	2	30	QC
TCEP	10.5	0.34	1.0	ng/l	10.0		105	25-149	24	30	QC
Trimethoprim	10.8	0.24	1.0	ng/l	10.0		108	67-139	11	30	QC
ntch: W8D1530 - EPA 1694M-ESI+											
Blank (W8D1530-BLK1)		0.4=	4.4		pared: 04/25/	8 Analyzed:	06/01/1	8			
TDCPP	ND	0.47	1.0	ng/l							
Blank (W8D1530-BLK2)	NID	1 4	20		pared: 04/25/	8 Analyzed:	06/03/1	8			00
Acetaminophen	ND	1.4	20	ng/l							QC-
Amoxicillin	ND	2.0	10	ng/l							QC-

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

8D06080

Quality Control Results

(Continued)

Page 35 of 37

PCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)											
					Spike	Source		%REC		RPD	
•	esult	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qual
cch: W8D1530 - EPA 1694M-ESI+ (Continued)				_				_			
lank (W8D1530-BLK2) Atenolol	ND	0.20	1.0	Pre ng/l	pared: 04/25/1	8 Analyzed:	06/03/1	8			C
	ND	0.11	1.0	ng/l							
Azithromycin		2.2	10	ng/l							
,	.745	0.31	1.0	ng/l							QC
	.438	0.080	1.0	ng/l							QC
Ciprofloxacin		1.4	5.0	ng/l							В, С
Cotinine		0.59	2.0	ng/l							QC
	.526	0.060	1.0	ng/l							QC
Diazepam	.242	0.14	1.0	ng/l							QC
'		0.080	1.0	ng/l							(
Meprobamate	ND	0.36	1.0	ng/l							(
, Methadone 0.		0.040	1.0	ng/l							QC
Phenytoin (Dilantin)	ND	0.33	1.0	ng/l							(
Primidone	ND	0.60	1.0	ng/l							(
Sulfamethoxazole	ND	0.19	1.0	ng/l							(
TCEP	ND	0.34	1.0	ng/l							(
TCPP · · · · · · · · · · · · · · · · · ·	5.94	0.27	1.0	ng/l							В, (
Trimethoprim	ND	0.24	1.0	ng/l							(
					1.04/05/		00.004.04	_			
CS (W8D1530-BS1) TDCPP	15.2	0.47	1.0	ng/l	pared: 04/25/ 1 10.0	8 Analyzed:	152	2 0-158			
CC (HIODAESO DCS)							06 (02 (4)	•			
CS (W8D1530-BS2) Acetaminophen	197	1.4	20	ng/l	pared: 04/25/ 1 200	is Analyzed:	98	66-156			(
Amoxicillin	254	2.0	10	ng/l	100		254	14-167			Q-08, 0
Atenolol	8.67	0.20	1.0	ng/l	10.0		87	56-164			(
Atorvastatin	5.13	0.11	1.0	ng/l	10.0		51	0.1-173			(
Azithromycin	83.6	2.2	10	ng/l	100		84	52-166			(
Caffeine	9.65	0.31	1.0	ng/l	10.0		96	55-152			(
Carbamazepine	8.71	0.080	1.0	ng/l	10.0		87	60-135			(
Ciprofloxacin	28.2	1.4	5.0	ng/l	50.0		56	51-168			(
Cotinine	10.7	0.59	2.0	ng/l	10.0		107	68-155			(
DEET {	8.95	0.060	1.0	ng/l	10.0		90	45-135			(
Diazepam	9.71	0.14	1.0	ng/l	10.0		97	58-127			(
Fluoxetine	10.1	0.080	1.0	ng/l	10.0		101	55-150			(
Meprobamate	20.0	0.36	1.0	ng/l	10.0		200	11-166			В
Methadone .	8.33	0.040	1.0	ng/l	10.0		83	62-137			(
	7.15	0.33	1.0	ng/l	10.0		72	69-138			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Quality Control Results

PPCPs - Pharmaceuticals by LC/MSMS	-ESI+ (Continued)										
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
Batch: W8D1530 - EPA 1694M-ESI+ (Cor	ntinued)										
LCS (W8D1530-BS2)				Pre	pared: 04/25/1	8 Analyzed:	06/03/18	В			
Primidone	9.63	0.60	1.0	ng/l	10.0		96	54-147			QC-2
Sulfamethoxazole	10.5	0.19	1.0	ng/l	10.0		105	60-133			QC-2
TCEP	9.96	0.34	1.0	ng/l	10.0		100	25-149			QC-2
TCPP	12.4	0.27	1.0	ng/l	10.0		124	24-149			QC-2
Trimethoprim	10.2	0.24	1.0	ng/l	10.0		102	67-139			QC-2
LCS Dup (W8D1530-BSD1)				Pre	pared: 04/25/1	8 Analyzed:	06/01/18	В			
TDCPP	9.58	0.47	1.0	ng/l	10.0		96	20-158	45	30	Q-12
LCS Dup (W8D1530-BSD2)				Pre	pared: 04/25/1	8 Analyzed:	06/03/18	В			
Acetaminophen	219	1.4	20	ng/l	200		110	66-156	11	30	QC-2
Amoxicillin	213	2.0	10	ng/l	100		213	14-167	18	30	Q-08, QC-2
Atenolol	10.7	0.20	1.0	ng/l	10.0		107	56-164	21	30	QC-2
Atorvastatin	27.3	0.11	1.0	ng/l	10.0		273	0.1-173	137	30	BS-04
Azithromycin	91.5	2.2	10	ng/l	100		92	52-166	9	30	QC-: QC-:
Caffeine	17.3	0.31	1.0	ng/l	10.0		173	55-152	57	30	QC-2,
Carbamazepine	9.68	0.080	1.0	ng/l	10.0		97	60-135	11	30	BS-04 QC-2
Ciprofloxacin	32.9	1.4	5.0	ng/l	50.0		66	51-168	15	30	QC-2
Cotinine	11.0	0.59	2.0	ng/l	10.0		110	68-155	3	30	QC-2
DEET	11.6	0.060	1.0	ng/l	10.0		116	45-135	26	30	QC-2
Diazepam	10.9	0.14	1.0	ng/l	10.0		109	58-127	12	30	QC-2
Fluoxetine	12.2	0.080	1.0	ng/l	10.0		122	55-150	19	30	QC-2
Meprobamate	19.6	0.36	1.0	ng/l	10.0		196	11-166	2	30	BS-H,
Methadone	11.7	0.040	1.0	ng/l	10.0		117	62-137	34	30	QC-2 Q-12, QC-2
Phenytoin (Dilantin)	8.85	0.33	1.0	ng/l	10.0		88	69-138	21	30	QC-
Primidone	10.6	0.60	1.0	ng/l	10.0		106	54-147	10	30	QC-2
	9.96	0.19	1.0	ng/l	10.0		100	60-133	5	30	QC-2
TCEP		0.34	1.0	ng/l	10.0		97	25-149	3	30	QC-2
TCPP	0.00	0.27	1.0	ng/l	10.0		81	24-149	42	30	Q-12, QC-2
1011	0.13	0.21	1.0	119/1	10.0		01	ZT-143	72	30	Q-12, QU-2

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VCEHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

06/27/2018 15:41

Notes and Definitions

ltem	Definition
В	Blank contamination. The analyte was found in the associated blank as well as in the sample.
B-06	This analyte was found in the method blank, which was possibly contaminated during sample preparation. The batch was accepted since this analyte was either not detected or more than 10 times of the blank value for all the samples in the batch.
B-07	This analyte was found in the method blank at levels above the MDL but below the reporting limit.
BS-04	The recovery of this analyte in LCS or LCSD was outside control limit. Sample was accepted based on the remaining LCS, LCSD or LCS-LL.
BS-H	The recovery of this analyte in the BS/LCS was over the control limit. Sample result is suspect.
I-05	Low internal standard recovery possibly due to matrix interference. The result is suspect.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
Q-12	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
QC-2	This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

- 1 /1	

Weck Laboratories, Inc.

CHAIN OF CUSTODY RECORD

_ 		santanya sadan nyalare voluntara belestar fa		Analytical Laboratory Services								$\alpha \mathcal{U}_{\mathcal{B}}$	(LO))
14859 East Clark				745 vww.wecklabs.com			STANDAR	RD			Page	1	Of 3	
CLIENT NAME: Geos		0-000-2004	+ ♥ VV	PROJECT: VCEHD OWTS Study (LA03	391)	Т	ANALYSES	REQUES	ΓED	<u> </u>	SPECIA	L HAN	DLING	
	-,										1	Same Da	y Rush 150%	6
] <u>i</u>	1 1 1	1 1			()	24 Hour F	Rush 100%	
ADDRESS:				PHONE: Jared Ervin: 805-979-91	129	EPA 1694-ESI+					r		ur Rush 75%	,
924 Anacapa St., S				FAX:		16					posterial and the second	•	Rush 30% ractions 50%	
Santa Barbara, CA	93101			EMAIL: Jervin@Geosyntec.co	<u>OIH</u>	[8]							usiness Days	
PROJECT MANAGE	R: Jared Ervin			SAMPLER: D							Ť		ata Package	
				REBECCA LUSTE] S				<u> </u>	harges will		weekends/	holidays
ID#	DATE	TIME	SMPL	T SAMPLE IDENTIFICATION/SHE LOCATIO	N #OF	I O I					Nethod of Si OMMENTS			
(For lab Use Only)	SAMPLED	SAMPLED	TYPE	Cut at A 10 mas	CONT			-		+	OMMENTO			
3	4218	918	AQ			X		<u> </u>	-					
		1035	AR	GW-E-02_18040;	2	<u>- × </u>		<u> </u>	<u> </u>					
		1100	AR	GW-E-03_18040	22	. <u>X</u>								
	<u> </u>	1155	AQ	SW-05-B_18040	2 2	7								
		1330	AQ	SW-04-11_18040	22	×						,		
	V	1425	AQ	SW-03_D_12040	22	×								
	4/3/18	903	AQ	GN-A-03_180403	3 2									
	1	931	40	GW-A-02-12040	3	// `								
		959	AQ	GN-4-04-180403	3 2	×								
		1030	AG	GW-A-U1-18040	3 2	Īχ								
		1117	AW	GN-F-02-18040	3 2	Χ								
	V	1231	AR	SW-01- D_18040	13 2	x								
RELINQUISHED	BY ,	,		E / TIME REGE/V	ÆD ΒΥ	- Andrews Control	")		SA	MPLE CON	IDITION:		SAMPLE TY AQ=Aqueou	
REBECA	y Lus	TG	14/1	6/18 1401 (-	14		my	nerton.	Actual T	'emperature:	4.7		NA≔ Non Ad SL = Sludge	queous
RELINQUISHED			DÁŢ	E/TIME RECEV	E/O BY					d On Ice		O'N.	DW = Drinki WW = Wast	**
Worth fix	Second Second	AND THE PROPERTY OF THE PERSON	141	6 16 16:29	t W	V	410611	16:29		e Seals Pres	ent	Y / N/	RW ≈ Rain \	Water
RÉLINQUISHED	I BV		DAT	TE/TIME RECEIV	/FD RV		(100)18	100/		er Attacked ed at Lab		Y / N	GW = Grour SO = Soil	id water
, LEINGORNED	. 51			TEOLINE NEOLINE	,							V	SW = Solid '	Waste
		· ·	<u> </u>	oprow production	re / pu i n		ODMATION	1	<u> </u>				OT ≃ Other	Matrix
PRESCHEDULED RU OVER UNSCHEDULI	and the second s		PRIOR	RITY SPECIAL REQUIREMENT	9 / BILLI	NG INF	ORIVIA HON							
Client narrow to Torm			14/14/14/14	wooklahe aam									COC version	on 042707

1	٨	/		
_		F	LI	

Weck Laboratories, Inc.

CHAIN OF CUSTODY RECORD

	77777	······································	************	Analytical Labo	ratory Services - Sir	etalelettetetete	4							KONOOR
14859 East Clark	k Avenue: I	ndustry : C	A 91	745				ST	AND	ARD			D	P DO 60 50
		6-336-2634	→ V	www.wecklabs.com	C Ct. d. (1 A0201		_		141.160	EO DEOL	IFOTED.			IAL HANDLING
CLIENT NAME: Geos	syntec			PROJECT: VCEHD OWT	S Study (LAUSS)	,	-	Ar T I	VALYS	ES REQU	JESTED			Same Day Rush 150%
							± 50					1 1	Juin-	24 Hour Rush 100%
ADDRESS:				PHONE: Jared Ervir	n: 805-979-9129		1 ≝						-	48-72 Hour Rush 75%
924 Anacapa St., S	Suite 4A			FAX:			EPA 1694-ESI+						Ĭ~	4 - 5 Day Rush 30%
Santa Barbara, CA				EMAIL: <u>Jervin@G</u>	eosyntec.com	<u>l</u>	₹		1				ilone	Rush Extractions 50%
														10 - 15 Business Days
PROJECT MANAGE	R: Jared Ervin			SAMPLER: "	Lucia		ğ		1 1				Charges	QA/QC Data Package will apply for weekends/holid
154	DATE	TIME -	SMPL	REBECCA I	NV 4 /47	# 0F	PPCPs							Shipment:
ID# (For lab Use Only)	SAMPLED	SAMPLED	TYPE	SAMPLE IDENTIFICATION	I/SITE LOCATION	CONT.	표						COMMENT	
	4318	1319	40	GW-C-07_18	Alo 2	2	×							
	1	 	 	1-1				+	+ +	_		+-+		
		1337	<u> </u>	GW-C-086_		-65	X		1-1			1		
	414/18	902		GW-6-03_	180404	l	X	<u> </u>				<u> </u>		
		1030		GW-C-BK-D	6_180404	1	χ]						
		1055		GW-D-07_19		1	ĺχ							
		12:11		SW-03-U_1		Ti	ገ							,
	 	 				1	$\frac{1}{\lambda}$	+	 					
	 	12-56	├	GW-A-07-		 		╂	-				<u> </u>	
	<u> </u>	1327	١,	\$10-02-D	<u>-180404</u>	1	X	ļ				1		
İ														
							1							
							†							
RELINQUISHED	BY	<u> </u>	DAT	Ę/ŢIME	RECEIVED	BY	and the second second					SAMPLI	E CONDITION:	SAMPLE TYPE CO
an on	N LUS	7 10	4/1	d18 1401	1/1/	Carried Street	and the second		or other designation of the last)	Actu	al Tempe	erature:	AQ≔Aqueous NA≔ Non Aqueou
PEBECA RELINQUISHED	KI /_US/	/ %	DAT	<u>0/8 (40/1</u> E/TIME /	RECEIVE) DV		for the same of th			Pos	eived On	D(1	SL ≃ Sludge DW = Drinking W
AZ //	191	=	l	1 1 1	-1000	7		1. 1.			Pres	served		V N WW = Waste Wa
6-1/4			4	(e)18/16:2°	11746/	4	4	//0@//	8 1	16:29	Con	ence Sea tainer Att	als Present acked	Y / N RW = Rain Water Y / N GW = Ground Wa
RELINQUISHED	ΒΥ			E/TIME	REÇEIVE	ΒY		· · · · ·	•		Pres	served at	Lab	Y / N SO = Soil
					1									SW = Solld Waste OL = Oil
PRESCHEDULED RU	USH ANALYSE!	S WILL TAKE	PRIOR	RITY SPECIAL RI	EQUIREMENTS /	BILLIN	IG IN	FORMATIO	N.				<u></u>	OT = Other Matrix
OVER UNSCHEDUL														
Client agrees to Term	ns & Conditions	at:	WWW.	wecklabs.com										COC version 043

W	

Weck Laboratories, Inc. Analytical Laboratory Services - Since 1964

Standard CHAIN OF CUSTODY RECORD

14859 East Clark Avenue:Industry : CA 91745

WECK WKO# 2000 80

Tel 626-336-2139 • Fax 626-336-2634 •	www.wecklabs.com						(WKO# <u>& POGO</u>
CLIENT NAME:	PROJECT:				ES REQU	ESTED	SPECIAL HANDLING
GEOSYNTEC ADDRESS:	VC EHD OWTS Study (LA0391) PHONE: Jared Ervin 805 979-9129 FAX:	EPA 1694-ESI+	2474	4 Jotal Nilve			Same Day Rush 150% 24 Hour Rush 100% 48-72 Hour Rush 75% 4 - 5 Day Rush 30%
924 ANACAPA ST. SUITE 4A SANTA BARBARA, CA 93101	EMAIL: <u>Jervin@Geosyntec.com</u>)	Ammonia *			Rush Extractions 50%
PROJECT MANAGER	SAMPLER	출 .	Ntrate.	ğ			QA/QC Data Package
Jared Ervin	Rebecca Lustig	Š	22	<u></u>			Charges will apply for weekends/holidays Method of Shipment:
ID# DATE TIME SMPL CI (Lab Use Only) SAMPLED SAMPLED TYPE Y/I	SAMPLE IDENTIFICATION/SITE LOCATION	PPCPs by	Ž	¥			COMMENTS
45/18 938 AQN		X					11 Amber
1102	GW-15-05-180405	X	_				
102	GW-D-05-180405_DUP	X	_	++-			
1245	GW-B-07-180405	* *		<u> </u>			
1406	GW-B-04-180405_EQ	x				 	
41018 950 AQ N	10.3	×					
							V
46/18 950 ARN	GN-6-01-180406	<u> </u>	۷)				IL plastec
		$\vdash \vdash$	_				
			+				
RELINQUISHED BY BEBECCA LUSTIA	DATE / TIME RECEIVED BY			ATE / TIN		Actual Tempera	SL = Sludge
RELINQUISHED BY		:29	, 4	ATE / TIM /00/18	/	Received On Ici Preserved Evidence Seals Container Attact Preserved at La	Present Y (N) WW = Waste Water RW = Rain Water ked Y (N) GW = Ground Water
RELINQUÍSHED BÝ	DATE / TIME RECEIVED BY			ATE / TIN	/IE	rieserved at La	10 Y / Uy SO = Soil SW = Soild Waste OL = Oil OT = Other Matrix
PRESCHEDULED RUSH ANALYSES WILL TAKE PRIO OVER UNSCHEDULED RUSH REQUESTS							
Client agrees to Terms & Conditions at:	www.wecklabs.com						

FINAL REPORT

Work Orders: 8E18098 **Report Date:** 8/13/2018

Received Date: 5/18/2018

Turnaround Time: Normal

Phones: (805) 979-9129

Fax: (805) 899-8689

P.O. #:

Billing Code:

Project: VC EHD OWTS Study (LA0391)

Attn: Jared Ervin

Client: Geosyntec Consultants - Santa Barbara

924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

DoD-ELAP #L2457 • ELAP-CA #1132 • EPA-UCMR #CA00211 • Guam-EPA #17-008R • HW-DOH # • ISO 17025 #L2457.01 • LACSD #10143 • NELAP-CA #04229CA • NELAP-OR #4047 • NJ-DEP #CA015 • NV-DEP #NAC 445A • SCAOMD #93LA1006

This is a complete final report. The information in this report applies to the samples analyzed in accordance with the chain-of-custody document. Weck Laboratories certifies that the test results meet all requirements of TNI unless noted by qualifiers or written in the Case Narrative. This analytical report must be reproduced in its entirety.

Dear Jared Ervin,

Enclosed are the results of analyses for samples received 5/18/18 with the Chain-of-Custody document. The samples were received in good condition, at 4.1 °C and on ice. All analyses met the method criteria except as noted in the case narrative or in the report with data qualifiers.

Reviewed by:

Brandon Gee

Operations Manager/Senior PM

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Summary

Sample Name	Sampled By	Lab ID	Matrix	Sampled	Qualifier
GW-C-BK-05-180514	Rebecca Lustig	8E18098-01	Water	05/14/18 08:53	
GW-C-BK-05-180514-EB	Rebecca Lustig	8E18098-02	Water	05/14/18 08:53	
GW-E-02-180514	Rebecca Lustig	8E18098-03	Water	05/14/18 10:16	
SW-05-D-180514	Rebecca Lustig	8E18098-04	Water	05/14/18 10:38	
SW-04-U-180514	Rebecca Lustig	8E18098-05	Water	05/14/18 12:02	
SW-04-D-180514	Rebecca Lustig	8E18098-06	Water	05/14/18 12:50	
SW-03-D-180514	Rebecca Lustig	8E18098-07	Water	05/14/18 13:43	
GW-A-03-180515	Rebecca Lustig	8E18098-08	Water	05/15/18 09:07	
GW-A-04-180515	Rebecca Lustig	8E18098-09	Water	05/15/18 10:00	
GW-A-01-180515	Rebecca Lustig	8E18098-10	Water	05/15/18 10:33	
GW-F-02-180515	Rebecca Lustig	8E18098-11	Water	05/15/18 11:25	
GW-C-07-180515	Rebecca Lustig	8E18098-12	Water	05/15/18 13:43	
GW-C-08-180515	Rebecca Lustig	8E18098-13	Water	05/15/18 14:04	
GW-A-02-180515	Rebecca Lustig	8E18098-14	Water	05/15/18 09:30	
GW-B-03-180516	Rebecca Lustig	8E18098-15	Water	05/16/18 08:50	
GW-B-03-180516-DUP	Rebecca Lustig	8E18098-16	Water	05/16/18 08:50	
SW-01-D-180516	Rebecca Lustig	8E18098-17	Water	05/16/18 10:06	
GW-B-04-180516	Rebecca Lustig	8E18098-18	Water	05/16/18 11:07	
SW-03-U-180516	Rebecca Lustig	8E18098-19	Water	05/16/18 12:06	
SW-02-U-180516	Rebecca Lustig	8E18098-20	Water	05/16/18 13:55	
GW-A-07-180516	Rebecca Lustig	8E18098-21	Water	05/16/18 14:30	
GW-C-BK-06-180517	Rebecca Lustig	8E18098-22	Water	05/17/18 08:22	
GW-D-07-180517	Rebecca Lustig	8E18098-23	Water	05/17/18 08:53	
GW-G-01-180517	Rebecca Lustig	8E18098-24	Water	05/17/18 09:50	
GW-D-04-180517	Rebecca Lustig	8E18098-25	Water	05/17/18 10:55	
GW-D-05-180517	Rebecca Lustig	8E18098-26	Water	05/17/18 12:01	
GW-E-03-180517	Rebecca Lustig	8E18098-27	Water	05/17/18 13:35	
GW-G-02-180518	Rebecca Lustig	8E18098-28	Water	05/18/18 09:32	
GW-G-02-180518	Rebecca Lustig	8E18098-29	Water	05/18/18 09:32	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-C-BK-05-180514						Sampled:	05/14/18 8:53 by Rel	pecca Lustic
	8E18098-01 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA 1694M-ESI+ Batch ID: W8E1718		Instr: LCMS02		Prepared: 05/31/18 13:11			Analyst: kan		
Acetamino	ophen		ND	1.4	20	ng/l	1	07/08/18 21:03	
Amoxicillir	n		ND	2.0	10	ng/l	1	07/08/18 21:03	
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 21:03	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/08/18 21:03	
Azithromy	ycin		4.6	2.2	10	ng/l	1	07/08/18 21:03	•
Caffeine			1.8	0.31	1.0	ng/l	1	07/08/18 21:03	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/08/18 21:03	
Ciproflox	acin		4.7	1.4	5.0	ng/l	1	07/08/18 21:03	
Cotinine -			ND	0.59	2.0	ng/l	1	07/08/18 21:03	
DEET -			2.3	0.060	1.0	ng/l	1	07/08/18 21:03	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/08/18 21:03	
Fluoxetin	e		1.1	0.080	1.0	ng/l	1	07/08/18 21:03	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/08/18 21:03	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/08/18 21:03	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 21:03	
Primidone)		ND	0.60	1.0	ng/l	1	07/08/18 21:03	
Sucralose)		ND	5.0	5.0	ng/l	1	07/08/18 21:03	
Sulfameth	hoxazole		0.74	0.19	1.0	ng/l	1	07/08/18 21:03	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 21:03	
TCPP -			4.3	0.27	1.0	ng/l	1	07/08/18 21:03	
TDCPP			5.5	0.47	1.0	ng/l	1	06/20/18 01:01	E
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/08/18 21:03	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

								(-	
Sample:	GW-C-BK-05-180514-EB	GW-C-BK-05-180514-EB							
	8E18098-02 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA 1694M-ESI+		Batch ID: W8E1718	Instr: LCMS02		Prepared: 05/31/18 13:11		Analyst: kan		
Acetamino	ophen		ND	1.4	20	ng/l	1	07/08/18 21:19	
Amoxicillin	n		ND	2.0	10	ng/l	1	07/08/18 21:19	
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 21:19	
Atorvastat	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/08/18 21:19	
Azithromy	cin		ND	2.2	10	ng/l	1	07/08/18 21:19	
Caffeine			32	0.31	1.0	ng/l	1	07/08/18 21:19	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/08/18 21:19	
Ciproflox	acin		1.4	1.4	5.0	ng/l	1	07/08/18 21:19	
Cotinine			0.62	0.59	2.0	ng/l	1	07/08/18 21:19	
DEET -			4.4	0.060	1.0	ng/l	1	07/08/18 21:19	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/08/18 21:19	
Fluoxetin	e		0.33	0.080	1.0	ng/l	1	07/08/18 21:19	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/08/18 21:19	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/08/18 21:19	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 21:19	
Primidone)		ND	0.60	1.0	ng/l	1	07/08/18 21:19	
Sucralose)		ND	5.0	5.0	ng/l	1	07/08/18 21:19	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/08/18 21:19	
TCEP -			1.6	0.34	1.0	ng/l	1	07/08/18 21:19	
TCPP -			4.0	0.27	1.0	ng/l	1	07/08/18 21:19	
TDCPP			14	0.47	1.0	ng/l	1	06/20/18 01:17	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/08/18 21:19	
ор				· ·			•	21,00,1021110	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

								•	<u>'</u>
Sample:	GW-E-02-180514						Sampled: (05/14/18 10:16 by Rel	becca Lusti
	8E18098-03 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PPCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	PA 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS(02	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/08/18 21:36	
Amoxicilli	in		ND	2.0	10	ng/l	1	07/08/18 21:36	
Atenolol			1.3	0.20	1.0	ng/l	1	07/08/18 21:36	I
Atorvasta	atin		ND	0.11	1.0	ng/l	1	07/08/18 21:36	
Azithrom	nycin		3.3	2.2	10	ng/l	1	07/08/18 21:36	
Caffeine			0.66	0.31	1.0	ng/l	1	07/08/18 21:36	
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/08/18 21:36	
Ciproflox	cacin		1.4	1.4	5.0	ng/l	1	07/08/18 21:36	
Cotinine			ND	0.59	2.0	ng/l	1	07/08/18 21:36	
DEET -			0.67	0.060	1.0	ng/l	1	07/08/18 21:36	
Diazepan	n		ND	0.14	1.0	ng/l	1	07/08/18 21:36	
Fluoxetin	e		ND	0.080	1.0	ng/l	1	07/08/18 21:36	
Meprobai	mate		ND	0.36	1.0	ng/l	1	07/08/18 21:36	
Methador	ne		ND	0.040	1.0	ng/l	1	07/08/18 21:36	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 21:36	
Primidone	e		ND	0.60	1.0	ng/l	1	07/08/18 21:36	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/08/18 21:36	
Sulfamet	hoxazole		0.54	0.19	1.0	ng/l	1	07/08/18 21:36	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 21:36	
TCPP -			ND	0.27	1.0	ng/l	1	07/08/18 21:36	
TDCPP			2.4	0.47	1.0	ng/l	1	06/20/18 01:33	1
Trimetho	prim		ND	0.24	1.0	ng/l	1	07/08/18 21:36	
1	•			-	-	5			

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	ample results							(0	Jonanaeu)
Sample:	SW-05-D-180514					S	ampled:	05/14/18 10:38 by Re	becca Lustig
	8E18098-04 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	PA 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS	02	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamin	nophen		ND	1.4	20	ng/l	1	07/08/18 21:52	
Amoxicilli	•••		.,_	2.0	10	ng/l	1	07/08/18 21:52	
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 21:52	
Atorvasta	atin		ND	0.11	1.0	ng/l	1	07/08/18 21:52	
Azithrom	nycin		2.6	2.2	10	ng/l	1	07/08/18 21:52	J
Caffeine			6.0	0.31	1.0	ng/l	1	07/08/18 21:52	
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/08/18 21:52	
Ciproflox	kacin		1.9	1.4	5.0	ng/l	1	07/08/18 21:52	J
Cotinine			0.90	0.59	2.0	ng/l	1	07/08/18 21:52	J
DEET -			1.3	0.060	1.0	ng/l	1	07/08/18 21:52	
Diazepan	m		ND	0.14	1.0	ng/l	1	07/08/18 21:52	
Fluoxetin	e		ND	0.080	1.0	ng/l	1	07/08/18 21:52	
Meprobai	mate		ND	0.36	1.0	ng/l	1	07/08/18 21:52	
Methador	ne		ND	0.040	1.0	ng/l	1	07/08/18 21:52	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 21:52	
Primidon	10		0.81	0.60	1.0	ng/l	1	07/08/18 21:52	J
Sucralose	e		ND	5.0	5.0	ng/l	1	07/08/18 21:52	
Sulfametl	hoxazole		ND	0.19	1.0	ng/l	1	07/08/18 21:52	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 21:52	
TCPP -			1.4	0.27	1.0	ng/l	1	07/08/18 21:52	
TDCPP			1.4	0.47	1.0	ng/l	1	06/20/18 01:50	В
Trimetho	prim		ND	0.24	1.0	ng/l	1	07/08/18 21:52	
	•			-		3		· · · · · · · · · · · · · · · · · · ·	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

N Sa	ampie Results							(C	Continued)
Sample:	SW-04-U-180514					9	Sampled:	05/14/18 12:02 by Re	becca Lustig
	8E18098-05 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/08/18 22:09	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/08/18 22:09	
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 22:09	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/08/18 22:09	
Azithromy	ycin		ND	2.2	10	ng/l	1	07/08/18 22:09	
Caffeine			4.6	0.31	1.0	ng/l	1	07/08/18 22:09	
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/08/18 22:09	
Ciproflox	acin		2.4	1.4	5.0	ng/l	1	07/08/18 22:09	J
Cotinine			ND	0.59	2.0	ng/l	1	07/08/18 22:09	
DEET -			0.75	0.060	1.0	ng/l	1	07/08/18 22:09	J
Diazepam	n		ND	0.14	1.0	ng/l	1	07/08/18 22:09	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/08/18 22:09	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/08/18 22:09	
Methador	ne		ND	0.040	1.0	ng/l	1	07/08/18 22:09	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 22:09	
Primidone	ə		ND	0.60	1.0	ng/l	1	07/08/18 22:09	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/08/18 22:09	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/08/18 22:09	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 22:09	
TCPP -			ND	0.27	1.0	ng/l	1	07/08/18 22:09	
TDCPP				0.47	1.0	ng/l	1	06/20/18 02:06	В
Trimethop			4.0	0.24	1.0	ng/l	1	07/08/18 22:09	
mineulop	211111		IND	0.27	1.0	rig/i		07/00/10 22.09	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

'	SW-04-D-180514 8E18098-06 (Water)					Sá	ampled:	05/14/18 12:50 by Rel	pecca Lustig
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Pharmac	ceuticals by LC/MSMS-ESI+								
Method: EPA 1	694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared: (05/31/18 13:11		Analyst: kan	
Acetaminoph	nen		ND	1.4	20	ng/l	1	07/08/18 22:25	
Amoxicillin			7.8	2.0	10	ng/l	1	07/08/18 22:25	J
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 22:25	
Atorvastatin			ND	0.11	1.0	ng/l	1	07/08/18 22:25	
Azithromyci	n		3.3	2.2	10	ng/l	1	07/08/18 22:25	J
Caffeine			3.5	0.31	1.0	ng/l	1	07/08/18 22:25	
Carbamazep	oine		ND	0.080	1.0	ng/l	1	07/08/18 22:25	
Ciprofloxaci	n		5.3	1.4	5.0	ng/l	1	07/08/18 22:25	В
Cotinine			ND	0.59	2.0	ng/l	1	07/08/18 22:25	
DEET			1.3	0.060	1.0	ng/l	1	07/08/18 22:25	
Diazepam			ND	0.14	1.0	ng/l	1	07/08/18 22:25	
Fluoxetine			0.43	0.080	1.0	ng/l	1	07/08/18 22:25	J
Meprobamate	e		ND	0.36	1.0	ng/l	1	07/08/18 22:25	
Methadone			ND	0.040	1.0	ng/l	1	07/08/18 22:25	
Phenytoin (D	Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 22:25	
Primidone			ND	0.60	1.0	ng/l	1	07/08/18 22:25	
Sucralose				5.0	5.0	ng/l	1	07/08/18 22:25	
Sulfamethox	azole		ND	0.19	1.0	ng/l	1	07/08/18 22:25	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 22:25	
TCPP			ND	0.27	1.0	ng/l	1	07/08/18 22:25	
TDCPP			ND	0.47	1.0	ng/l	1	06/20/18 02:23	
Trimethoprim	1		ND	0.24	1.0	ng/l	1	07/08/18 22:25	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	SW-03-D-180514						Sampled: (05/14/18 13:43 by Rel	pecca Lustic
	8E18098-07 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0		•	05/31/18 13:11		Analyst: kan	
Acetamino	•			1.4	20	ng/l	1	07/08/18 23:15	
Amoxicillin	n		ND	2.0	10	ng/l	1	07/08/18 23:15	
Atenolol			ND	0.20	1.0	ng/l	1	07/08/18 23:15	
Atorvastat	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/08/18 23:15	
Azithrom	ycin		8.2	2.2	10	ng/l	1	07/08/18 23:15	
Caffeine			3.4	0.31	1.0	ng/l	1	07/08/18 23:15	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/08/18 23:15	
Ciproflox	acin		11	1.4	5.0	ng/l	1	07/08/18 23:15	E
Cotinine			0.74	0.59	2.0	ng/l	1	07/08/18 23:15	•
DEET -			5.4	0.060	1.0	ng/l	1	07/08/18 23:15	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/08/18 23:15	
Fluoxetin	e		1.3	0.080	1.0	ng/l	1	07/08/18 23:15	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/08/18 23:15	
Methador	ne		0.24	0.040	1.0	ng/l	1	07/08/18 23:15	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 23:15	
Primidone)		ND	0.60	1.0	ng/l	1	07/08/18 23:15	
Sucralose)		ND	5.0	5.0	ng/l	1	07/08/18 23:15	
Sulfameth	hoxazole		0.33	0.19	1.0	ng/l	1	07/08/18 23:15	,
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 23:15	
TCPP			ND	0.27	1.0	ng/l	1	07/08/18 23:15	
TDCPP			ND	0.47	1.0	ng/l	1	06/20/18 03:12	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/08/18 23:15	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

/ V	'							`	,
Sample:	GW-A-03-180515						Sampled:	05/15/18 9:07 by Re	becca Lustig
	8E18098-08 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS()2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/08/18 23:31	
Amoxicillin	n		ND	2.0	10	ng/l	1	07/08/18 23:31	
Atenolol -			ND	0.20	1.0	ng/l	1	07/08/18 23:31	
Atorvasta	tin		0.52	0.11	1.0	ng/l	1	07/08/18 23:31	
Azithromy	ycin		6.9	2.2	10	ng/l	1	07/08/18 23:31	
Caffeine			2.4	0.31	1.0	ng/l	1	07/08/18 23:31	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/08/18 23:31	
Ciproflox	acin		10	1.4	5.0	ng/l	1	07/08/18 23:31	
Cotinine			ND	0.59	2.0	ng/l	1	07/08/18 23:31	
DEET -			1.8	0.060	1.0	ng/l	1	07/08/18 23:31	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/08/18 23:31	
Fluoxetin	e		1.5	0.080	1.0	ng/l	1	07/08/18 23:31	
Meproban	nate		ND	0.36	1.0	ng/l	1	07/08/18 23:31	
Methadon	ne		0.90	0.040	1.0	ng/l	1	07/08/18 23:31	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 23:31	
Primidone	·		ND	0.60	1.0	ng/l	1	07/08/18 23:31	
Sucralose			ND	5.0	5.0	ng/l	1	07/08/18 23:31	
Sulfameth	noxazole		0,29	0.19	1.0	ng/l	1	07/08/18 23:31	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 23:31	
TCPP			ND	0.27	1.0	ng/l	1	07/08/18 23:31	
TDCPP				0.47	1.0	ng/l	1	06/20/18 03:29	
Trimethop				0.24	1.0	ng/l	1	07/08/18 23:31	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-A-04-180515					9	Sampled: (05/15/18 10:00 by Rel	becca Lustig
	8E18098-09 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP.	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS(02	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/08/18 23:48	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/08/18 23:48	
Atenolol			0.95	0.20	1.0	ng/l	1	07/08/18 23:48	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/08/18 23:48	
Azithrom	ycin		4.1	2.2	10	ng/l	1	07/08/18 23:48	
Caffeine			0.81	0.31	1.0	ng/l	1	07/08/18 23:48	
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/08/18 23:48	
Ciproflox	acin		1.9	1.4	5.0	ng/l	1	07/08/18 23:48	
Cotinine			ND	0.59	2.0	ng/l	1	07/08/18 23:48	
DEET -			2.3	0.060	1.0	ng/l	1	07/08/18 23:48	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/08/18 23:48	
Fluoxetin	le		0.28	0.080	1.0	ng/l	1	07/08/18 23:48	
Meprobar	nate		ND	0.36	1.0	ng/l	1	07/08/18 23:48	
Methador	ne		ND	0.040	1.0	ng/l	1	07/08/18 23:48	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/08/18 23:48	
Primidone	3		ND	0.60	1.0	ng/l	1	07/08/18 23:48	
Sucralose)		ND	5.0	5.0	ng/l	1	07/08/18 23:48	
Sulfamet	hoxazole		0.28	0.19	1.0	ng/l	1	07/08/18 23:48	
TCEP			ND	0.34	1.0	ng/l	1	07/08/18 23:48	
TCPP			ND	0.27	1.0	ng/l	1	07/08/18 23:48	
TDCPP			1.0	0.47	1.0	ng/l	1	06/20/18 03:45	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/08/18 23:48	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-A-01-180515					Sa	ampled: (05/15/18 10:33 by Rel	becca Lustig
	8E18098-10 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/09/18 00:04	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/09/18 00:04	
Atenolol			ND	0.20	1.0	ng/l	1	07/09/18 00:04	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/09/18 00:04	
Azithrom	ycin		2.9	2.2	10	ng/l	1	07/09/18 00:04	J
Caffeine			0.70	0.31	1.0	ng/l	1	07/09/18 00:04	J
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 00:04	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/09/18 00:04	
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 00:04	
DEET -			0.89	0.060	1.0	ng/l	1	07/09/18 00:04	J
Diazeparr	n		ND	0.14	1.0	ng/l	1	07/09/18 00:04	
Fluoxetin	ne		0.42	0.080	1.0	ng/l	1	07/09/18 00:04	J
Meproban	mate		ND	0.36	1.0	ng/l	1	07/09/18 00:04	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/09/18 00:04	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 00:04	
Primidone	9		ND	0.60	1.0	ng/l	1	07/09/18 00:04	
Sucralose	3		ND	5.0	5.0	ng/l	1	07/09/18 00:04	
Sulfameth	hoxazole		0.39	0.19	1.0	ng/l	1	07/09/18 00:04	J
TCEP			ND	0.34	1.0	ng/l	1	07/09/18 00:04	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 00:04	
TDCPP			ND	0.47	1.0	ng/l	1	06/20/18 04:02	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/09/18 00:04	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-F-02-180515					S	Sampled: (05/15/18 11:25 by Rel	becca Lusti
	8E18098-11 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/09/18 00:21	
Amoxicillir	n		ND	2.0	10	ng/l	1	07/09/18 00:21	
Atenolol -			ND	0.20	1.0	ng/l	1	07/09/18 00:21	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/09/18 00:21	
Azithromy	cin		ND	2.2	10	ng/l	1	07/09/18 00:21	
Caffeine			1.3	0.31	1.0	ng/l	1	07/09/18 00:21	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 00:21	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/09/18 00:21	
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 00:21	
DEET -			3.4	0.060	1.0	ng/l	1	07/09/18 00:21	
Diazepam)		ND	0.14	1.0	ng/l	1	07/09/18 00:21	
Fluoxetin	e		0.30	0.080	1.0	ng/l	1	07/09/18 00:21	
Meproban	nate		ND	0.36	1.0	ng/l	1	07/09/18 00:21	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/09/18 00:21	
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 00:21	
Primidone)		ND	0.60	1.0	ng/l	1	07/09/18 00:21	
Sucralose	:		ND	5.0	5.0	ng/l	1	07/09/18 00:21	
Sulfameth	hoxazole		0.40	0.19	1.0	ng/l	1	07/09/18 00:21	
TCEP			ND	0.34	1.0	ng/l	1	07/09/18 00:21	
TCPP -			0.94	0.27	1.0	ng/l	1	07/09/18 00:21	
TDCPP -			ND	0.47	1.0	ng/l	1	06/20/18 04:18	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/09/18 00:21	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-C-07-180515					S	Sampled: (05/15/18 13:43 by Rel	oecca Lusti
	8E18098-12 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualific
CPs - Pharn	naceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	phen		ND	1.4	20	ng/l	1	07/09/18 00:37	
Amoxicillin	1		ND	2.0	10	ng/l	1	07/09/18 00:37	
Atenolol -			ND	0.20	1.0	ng/l	1	07/09/18 00:37	
Atorvastati	in		ND	0.11	1.0	ng/l	1	07/09/18 00:37	
Azithromy	ycin		2.5	2.2	10	ng/l	1	07/09/18 00:37	
Caffeine			3.2	0.31	1.0	ng/l	1	07/09/18 00:37	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 00:37	
Ciprofloxa	acin		3.8	1.4	5.0	ng/l	1	07/09/18 00:37	
Cotinine -			ND	0.59	2.0	ng/l	1	07/09/18 00:37	
DEET -			4.3	0.060	1.0	ng/l	1	07/09/18 00:37	
Diazepam			ND	0.14	1.0	ng/l	1	07/09/18 00:37	
Fluoxetine	e		0.39	0.080	1.0	ng/l	1	07/09/18 00:37	
Meprobam	nate		ND	0.36	1.0	ng/l	1	07/09/18 00:37	
Methadone	e		ND	0.040	1.0	ng/l	1	07/09/18 00:37	
Phenytoin	(Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 00:37	
Primidone			ND	0.60	1.0	ng/l	1	07/09/18 00:37	
Sucralose			ND	5.0	5.0	ng/l	1	07/09/18 00:37	
Sulfameth	noxazole		0.51	0.19	1.0	ng/l	1	07/09/18 00:37	
TCEP			ND	0.34	1.0	ng/l	1	07/09/18 00:37	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 00:37	
TDCPP			2.1	0.47	1.0	ng/l	1	06/20/18 04:35	
Trimethopi				0.24	1.0	ng/l	1	07/09/18 00:37	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-C-08-180515						Sampled: (05/15/18 14:04 by Rel	hecca Lustic
Junipie.							Jampied. (03, 13, 10 14.04 by Nei	occca Lustig
Analyte	8E18098-13 (Water)		Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
•	maceuticals by LC/MSMS-ESI+							, .	
Method: EPA	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS()2	Prepared: (05/31/18 13:11		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/09/18 00:53	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/09/18 00:53	
Atenolol			ND	0.20	1.0	ng/l	1	07/09/18 00:53	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/09/18 00:53	
Azithrom	ycin		5.6	2.2	10	ng/l	1	07/09/18 00:53	
Caffeine			2.0	0.31	1.0	ng/l	1	07/09/18 00:53	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 00:53	
Ciproflox	acin		6.2	1.4	5.0	ng/l	1	07/09/18 00:53	I
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 00:53	
DEET -			2.7	0.060	1.0	ng/l	1	07/09/18 00:53	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/09/18 00:53	
Fluoxetin	ie		0.44	0.080	1.0	ng/l	1	07/09/18 00:53	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/09/18 00:53	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/09/18 00:53	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 00:53	
Primidone	e		ND	0.60	1.0	ng/l	1	07/09/18 00:53	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/09/18 00:53	
Sulfameti	hoxazole		0.43	0.19	1.0	ng/l	1	07/09/18 00:53	
TCEP			ND	0.34	1.0	ng/l	1	07/09/18 00:53	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 00:53	
TDCPP			ND	0.47	1.0	ng/l	1	06/20/18 04:51	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/09/18 00:53	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	<u> </u>								,
Sample:	GW-A-02-180515						Sampled:	05/15/18 9:30 by Rel	oecca Lustig
	8E18098-14 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/09/18 01:10	
Amoxicillir	n		ND	2.0	10	ng/l	1	07/09/18 01:10	
Atenolol -			ND	0.20	1.0	ng/l	1	07/09/18 01:10	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/09/18 01:10	
Azithromy	ycin		4.9	2.2	10	ng/l	1	07/09/18 01:10	
Caffeine			0.93	0.31	1.0	ng/l	1	07/09/18 01:10	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 01:10	
Ciproflox	acin		4.4	1.4	5.0	ng/l	1	07/09/18 01:10	
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 01:10	
DEET -			2.9	0.060	1.0	ng/l	1	07/09/18 01:10	
Diazepam	1		0.27	0.14	1.0	ng/l	1	07/09/18 01:10	
Fluoxetin	e		0.34	0.080	1.0	ng/l	1	07/09/18 01:10	
Meproban	nate		ND	0.36	1.0	ng/l	1	07/09/18 01:10	
Methadon	ne		0.16	0.040	1.0	ng/l	1	07/09/18 01:10	
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 01:10	
Primidone	;		ND	0.60	1.0	ng/l	1	07/09/18 01:10	
Sucralose	:		ND	5.0	5.0	ng/l	1	07/09/18 01:10	
Sulfameth	hoxazole		0.37	0.19	1.0	ng/l	1	07/09/18 01:10	
TCEP			ND	0.34	1.0	ng/l	1	07/09/18 01:10	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 01:10	
TDCPP -			ND	0.47	1.0	ng/l	1	06/20/18 05:08	
Trimethop	orim			0.24	1.0	ng/l	1	07/09/18 01:10	
. ппоспор			110	0.21	1.0		•	3.700/10 01.10	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

								(-	,
Sample:	GW-B-03-180516						Sampled:	05/16/18 8:50 by Rel	becca Lustig
	8E18098-15 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared:	05/31/18 13:11		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/09/18 01:26	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/09/18 01:26	
Atenolol			0.41	0.20	1.0	ng/l	1	07/09/18 01:26	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/09/18 01:26	
Azithrom	ycin		3.0	2.2	10	ng/l	1	07/09/18 01:26	
Caffeine			1.8	0.31	1.0	ng/l	1	07/09/18 01:26	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 01:26	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/09/18 01:26	
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 01:26	
DEET -			1.8	0.060	1.0	ng/l	1	07/09/18 01:26	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/09/18 01:26	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/09/18 01:26	
Meproban	nate		ND	0.36	1.0	ng/l	1	07/09/18 01:26	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/09/18 01:26	
Phenytoin	ı (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 01:26	
Primidone	;		ND	0.60	1.0	ng/l	1	07/09/18 01:26	
Sucralose	:		ND	5.0	5.0	ng/l	1	07/09/18 01:26	
Sulfameth	hoxazole		0,21	0.19	1.0	ng/l	1	07/09/18 01:26	,
			ND	0.34	1.0	ng/l	1	07/09/18 01:26	
TCPP				0.27	1.0	ng/l	1	07/09/18 01:26	
TDCPP				0.47	1.0	ng/l	1	06/20/18 05:24	
Trimethop			0.00	0.24	1.0	ng/l	1	07/09/18 01:26	,
mineurop	/11111		IND	0.27	1.0	119/1		01/03/10 01.20	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

								(-	,
Sample:	GW-B-03-180516-DUP						Sampled:	05/16/18 8:50 by Rel	pecca Lustig
	8E18098-16 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8E1718	Instr: LCMS0)2	Prepared: (05/31/18 13:11		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/09/18 01:43	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/09/18 01:43	
Atenolol			ND	0.20	1.0	ng/l	1	07/09/18 01:43	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/09/18 01:43	
Azithrom	ycin		2.5	2.2	10	ng/l	1	07/09/18 01:43	J
Caffeine			0.49	0.31	1.0	ng/l	1	07/09/18 01:43	J
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/09/18 01:43	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/09/18 01:43	
Cotinine			ND	0.59	2.0	ng/l	1	07/09/18 01:43	
DEET -			1.7	0.060	1.0	ng/l	1	07/09/18 01:43	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/09/18 01:43	
Fluoxetine	9		ND	0.080	1.0	ng/l	1	07/09/18 01:43	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/09/18 01:43	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/09/18 01:43	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/09/18 01:43	
Primidone	• · · · · · · · · · · · · · · · · · · ·		ND	0.60	1.0	ng/l	1	07/09/18 01:43	
Sucralose	;		ND	5.0	5.0	ng/l	1	07/09/18 01:43	
Sulfameti	hoxazole		0.38	0.19	1.0	ng/l	1	07/09/18 01:43	J
	· · · · · · · · · · · · · · · · · · ·		ND	0.34	1.0	ng/l	1	07/09/18 01:43	
				0.27	1.0	ng/l	1	07/09/18 01:43	
				0.47	1.0	ng/l	1	06/20/18 05:41	
Trimethop				0.24	1.0	ng/l	1	07/09/18 01:43	
mmemop	лин		IND	0.24	1.0	rig/i	'	01/09/10 01.43	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	ampio i todatto							, ,	ontinaca)
Sample:	SW-01-D-180516						Sampled:	05/16/18 10:06 by Rel	becca Lustig
	8E18098-17 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS(02	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/20/18 22:13	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/20/18 22:13	
Atenolol			ND	0.20	1.0	ng/l	1	07/20/18 22:13	
Atorvasta	itin		ND	0.11	1.0	ng/l	1	07/09/18 23:19	
Azithrom	ycin		2.6	2.2	10	ng/l	1	07/20/18 22:13	J
Caffeine			20	0.31	1.0	ng/l	1	07/20/18 22:13	В
Carbama	zepine		0.18	0.080	1.0	ng/l	1	07/20/18 22:13	
Ciproflox	cacin		3.8	1.4	5.0	ng/l	1	07/20/18 22:13	
Cotinine			0.77	0.59	2.0	ng/l	1	07/20/18 22:13	
DEET -			15	0.060	1.0	ng/l	1	07/20/18 22:13	
Diazepan	n		ND	0.14	1.0	ng/l	1	07/20/18 22:13	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/20/18 22:13	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/20/18 22:13	
Methador	ne		ND	0.040	1.0	ng/l	1	07/20/18 22:13	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 22:13	
Primidone	e		ND	0.60	1.0	ng/l	1	07/20/18 22:13	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/20/18 22:13	
Sulfameth	hoxazole		ND	0.19	1.0	ng/l	1	07/20/18 22:13	
TCEP -			ND	0.34	1.0	ng/l	1	07/20/18 22:13	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 23:19	
TDCPP			21	0.47	1.0	ng/l	1	07/20/18 22:13	В
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/20/18 22:13	
	F			o. <u> </u>			•	-:/20/.0 22:10	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample F

Sample Results

Sample:	GW-B-04-180516					S	Sampled: (05/16/18 11:07 by Rel	oecca Lusti
	8E18098-18 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualific
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS0)2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/20/18 22:30	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/20/18 22:30	
Atenolol			ND	0.20	1.0	ng/l	1	07/20/18 22:30	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/09/18 23:35	
Azithrom	ycin		3.7	2.2	10	ng/l	1	07/20/18 22:30	
Caffeine			2.6	0.31	1.0	ng/l	1	07/20/18 22:30	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/20/18 22:30	
Ciproflox	acin		3.8	1.4	5.0	ng/l	1	07/20/18 22:30	
Cotinine			ND	0.59	2.0	ng/l	1	07/20/18 22:30	
DEET -			2.7	0.060	1.0	ng/l	1	07/20/18 22:30	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/20/18 22:30	
Fluoxetin	le		0.41	0.080	1.0	ng/l	1	07/20/18 22:30	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/20/18 22:30	
Methador	ne		0.10	0.040	1.0	ng/l	1	07/20/18 22:30	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 22:30	
Primidone	3		ND	0.60	1.0	ng/l	1	07/20/18 22:30	
Sucralose	e		6.8	5.0	5.0	ng/l	1	07/20/18 22:30	
Sulfameti	hoxazole		2.4	0.19	1.0	ng/l	1	07/20/18 22:30	
TCEP			ND	0.34	1.0	ng/l	1	07/20/18 22:30	
TCPP			ND	0.27	1.0	ng/l	1	07/09/18 23:35	
TDCPP			12	0.47	1.0	ng/l	1	07/20/18 22:30	
Trimetho	nrim		0.31	0.24	1.0	ng/l	1	07/20/18 22:30	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	-								
Sample:	SW-03-U-180516					S	Sampled: (05/16/18 12:06 by Rel	pecca Lustig
	8E18098-19 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EPA	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS0	02	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/20/18 22:46	
Amoxicillir	n		ND	2.0	10	ng/l	1	07/20/18 22:46	
Atenolol -			ND	0.20	1.0	ng/l	1	07/20/18 22:46	
Atorvastat	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/09/18 23:52	
Azithromy	ycin		3.1	2.2	10	ng/l	1	07/20/18 22:46	
Caffeine			3.9	0.31	1.0	ng/l	1	07/20/18 22:46	I
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/20/18 22:46	
Ciproflox	acin		6.8	1.4	5.0	ng/l	1	07/20/18 22:46	I
Cotinine			ND	0.59	2.0	ng/l	1	07/20/18 22:46	
DEET -			2.2	0.060	1.0	ng/l	1	07/20/18 22:46	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/20/18 22:46	
Fluoxetin	e		0.55	0.080	1.0	ng/l	1	07/20/18 22:46	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/20/18 22:46	
Methadon	ne		0.12	0.040	1.0	ng/l	1	07/20/18 22:46	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 22:46	
Primidone	• · · · · · · · · · · · · · · · · · · ·		ND	0.60	1.0	ng/l	1	07/20/18 22:46	
Sucralose)		ND	5.0	5.0	ng/l	1	07/20/18 22:46	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/20/18 22:46	
TCEP			ND	0.34	1.0	ng/l	1	07/20/18 22:46	
TCPP				0.27	1.0	ng/l	1	07/09/18 23:52	
TDCPP			.,,_	0.47	1.0	ng/l	1	07/20/18 22:46	E
Trimethop				0.47	1.0	ng/l	1	07/20/18 22:46	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

ampio i todanto							•	, oritina da j
SW-02-U-180516					S	ampled:	05/16/18 13:55 by Rel	oecca Lustig
8E18098-20 (Water)								
		Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
maceuticals by LC/MSMS-ESI+								
A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS0)2	Prepared:	06/12/18 07:55		Analyst: kan	
ophen		ND	1.4	20	ng/l	1	07/20/18 23:03	
n		ND	2.0	10	ng/l	1	07/20/18 23:03	
		ND	0.20	1.0	ng/l	1	07/20/18 23:03	
tin		ND	0.11	1.0	ng/l	1	07/10/18 00:08	
ycin		2.8	2.2	10	ng/l	1	07/20/18 23:03	J
		75	0.31	1.0	ng/l	1	07/20/18 23:03	
zepine		0.22	0.080	1.0	ng/l	1	07/20/18 23:03	J
acin		3.2	1.4	5.0	ng/l	1	07/20/18 23:03	J
		0.84	0.59	2.0	ng/l	1	07/20/18 23:03	J
		16	0.060	1.0	ng/l	1	07/20/18 23:03	
1		ND	0.14	1.0	ng/l	1	07/20/18 23:03	
)		ND	0.080	1.0	ng/l	1	07/20/18 23:03	
nate		ND	0.36	1.0	ng/l	1	07/20/18 23:03	
ie		ND	0.040	1.0	ng/l	1	07/20/18 23:03	
ı (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 23:03	
·		ND	0.60	1.0	ng/l	1	07/20/18 23:03	
		ND	5.0	5.0	ng/l	1	07/20/18 23:03	
noxazole		ND	0.19	1.0		1	07/20/18 23:03	
		ND			· ·	1		
					-	•		
		V			· ·			В
		••			-			
	SW-02-U-180516 8E18098-20 (Water) naceuticals by LC/MSMS-ESI+ A 1694M-ESI+ Ophen in crin eepine acin nate e (Dilantin)	SW-02-U-180516 8E18098-20 (Water) naceuticals by LC/MSMS-ESI+ A 1694M-ESI+ Sphen nin rcin repine acin nate e (Dilantin)	SW-02-U-180516 8E18098-20 (Water) Result nacceuticals by LC/MSMS-ESI+ A 1694M-ESI+ Sphen ND ND ND ND ND ND ND ND ND ND ND ND ND	Name	SW-02-U-180516 SE18098-20 (Water) Result MDL MRL MRL MRL MDL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL MRL M	SW-02-U-180516 Result MDL MRL Units	SW-02-U-180516 Result MDL MRL Units Dit	SW-02-U-180516 8E18098-20 (Water) Result MDL MRL Units Di Analyzet

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	GW-A-07-180516 8E18098-21 (Water)					C.		05/46/40 44 00 1	
CPs - Pharma	8E18098-21 (Water)					30	impiea:	05/16/18 14:30 by Rel	pecca Lustig
CPs - Pharma									
			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
Method: FPA 1	ceuticals by LC/MSMS-ESI+								
	694M-ESI+	Batch ID: W8F0636	Instr: LCMS0)2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetaminoph	nen		ND	1.4	20	ng/l	1	07/20/18 23:19	
Amoxicillin			ND	2.0	10	ng/l	1	07/20/18 23:19	
Atenolol			ND	0.20	1.0	ng/l	1	07/20/18 23:19	
Atorvastatin			ND	0.11	1.0	ng/l	1	07/10/18 00:25	
Azithromyci	n		3.3	2.2	10	ng/l	1	07/20/18 23:19	J
Caffeine -			36	0.31	1.0	ng/l	1	07/20/18 23:19	В
Carbamazep	ine		ND	0.080	1.0	ng/l	1	07/20/18 23:19	
Ciprofloxaci	n		2.3	1.4	5.0	ng/l	1	07/20/18 23:19	J
Cotinine			ND	0.59	2.0	ng/l	1	07/20/18 23:19	
DEET			1.4	0.060	1.0	ng/l	1	07/20/18 23:19	
Diazepam			ND	0.14	1.0	ng/l	1	07/20/18 23:19	
Fluoxetine			ND	0.080	1.0	ng/l	1	07/20/18 23:19	
Meprobamat	e		ND	0.36	1.0	ng/l	1	07/20/18 23:19	
Methadone			ND	0.040	1.0	ng/l	1	07/20/18 23:19	
Phenytoin (D	Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 23:19	
Primidone -			ND	0.60	1.0	ng/l	1	07/20/18 23:19	
Sucralose			ND	5.0	5.0	ng/l	1	07/20/18 23:19	
Sulfamethox	azole		ND	0.19	1.0	ng/l	1	07/20/18 23:19	
TCEP			ND	0.34	1.0	ng/l	1	07/20/18 23:19	
TCPP			1.3	0.27	1.0	ng/l	1	07/10/18 00:25	
TDCPP			8.7	0.47	1.0	ng/l	1	07/20/18 23:19	В
Trimethoprii	m		0.29	0.24	1.0	ng/l	1	07/20/18 23:19	J

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

								(-	
Sample:	GW-C-BK-06-180517						Sampled:	05/17/18 8:22 by Rel	becca Lusti
	8E18098-22 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
CPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS()2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/20/18 23:36	
Amoxicillin	n		ND	2.0	10	ng/l	1	07/20/18 23:36	1-0
Atenolol			ND	0.20	1.0	ng/l	1	07/20/18 23:36	
Atorvastat	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/10/18 00:41	
Azithrom	ycin		2.3	2.2	10	ng/l	1	07/20/18 23:36	
Caffeine			1.4	0.31	1.0	ng/l	1	07/20/18 23:36	
Carbamaz	zepine		0.10	0.080	1.0	ng/l	1	07/20/18 23:36	
Ciproflox	acin		20	1.4	5.0	ng/l	1	07/20/18 23:36	
Cotinine			ND	0.59	2.0	ng/l	1	07/20/18 23:36	
DEET -			2.0	0.060	1.0	ng/l	1	07/20/18 23:36	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/20/18 23:36	
Fluoxetine	9		ND	0.080	1.0	ng/l	1	07/20/18 23:36	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/20/18 23:36	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/20/18 23:36	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 23:36	
Primidone	•		ND	0.60	1.0	ng/l	1	07/20/18 23:36	
Sucralose	;		ND	5.0	5.0	ng/l	1	07/20/18 23:36	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/20/18 23:36	
TCEP			ND	0.34	1.0	ng/l	1	07/20/18 23:36	
TCPP			1.3	0.27	1.0	ng/l	1	07/10/18 00:41	
TDCPP			13	0.47	1.0	ng/l	1	07/20/18 23:36	
Trimethop				0.24	1.0	ng/l	1	07/20/18 23:36	
.т.поспор			110	U.Z.	1.0	119/1	•	5.720/10 20.00	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	<u> </u>								
Sample:	GW-D-07-180517						Sampled:	05/17/18 8:53 by Rel	becca Lustig
	8E18098-23 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PPCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS	02	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/20/18 23:52	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/20/18 23:52	I-05
Atenolol			ND	0.20	1.0	ng/l	1	07/20/18 23:52	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/10/18 00:57	
Azithrom	ycin		2.8	2.2	10	ng/l	1	07/20/18 23:52	J
Caffeine			1.3	0.31	1.0	ng/l	1	07/20/18 23:52	В
Carbama	zepine		0.082	0.080	1.0	ng/l	1	07/20/18 23:52	J
Ciproflox	acin		4.6	1.4	5.0	ng/l	1	07/20/18 23:52	J
Cotinine			ND	0.59	2.0	ng/l	1	07/20/18 23:52	
DEET -			1.9	0.060	1.0	ng/l	1	07/20/18 23:52	
Diazepan	1		ND	0.14	1.0	ng/l	1	07/20/18 23:52	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/20/18 23:52	
Meprobar	nate		ND	0.36	1.0	ng/l	1	07/20/18 23:52	
Methador	ne		ND	0.040	1.0	ng/l	1	07/20/18 23:52	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/20/18 23:52	
Primidone	e		ND	0.60	1.0	ng/l	1	07/20/18 23:52	
Sucralose	9		ND	5.0	5.0	ng/l	1	07/20/18 23:52	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/20/18 23:52	
TCEP			ND	0.34	1.0	ng/l	1	07/20/18 23:52	
TCPP			ND	0.27	1.0	ng/l	1	07/10/18 00:57	
TDCPP			12	0.47	1.0	ng/l	1	07/20/18 23:52	В
Trimethor	orim		ND	0.24	1.0	ng/l	1	07/20/18 23:52	
			.,,	v. <u> </u>			•	-: , - 0, .0 - 0.3 -	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	ampie i teedite							\-	ontinaco
Sample:	GW-G-01-180517					S	ampled:	05/17/18 9:50 by Rel	oecca Lusti
	8E18098-24 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifi
CPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS0)2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/21/18 00:09	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/21/18 00:09	
Atenolol			ND	0.20	1.0	ng/l	1	07/21/18 00:09	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/10/18 01:14	
Azithrom	ycin		2.9	2.2	10	ng/l	1	07/21/18 00:09	
Caffeine			1.3	0.31	1.0	ng/l	1	07/21/18 00:09	
Carbamaz	zepine		ND	0.080	1.0	ng/l	1	07/21/18 00:09	
Ciproflox	acin		1.4	1.4	5.0	ng/l	1	07/21/18 00:09	
Cotinine			ND	0.59	2.0	ng/l	1	07/21/18 00:09	
DEET -			3.6	0.060	1.0	ng/l	1	07/21/18 00:09	
Diazepam	1		ND	0.14	1.0	ng/l	1	07/21/18 00:09	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/21/18 00:09	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/21/18 00:09	
Methadon	ne		ND	0.040	1.0	ng/l	1	07/21/18 00:09	
Phenytoin	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/21/18 00:09	
Primidone	3		ND	0.60	1.0	ng/l	1	07/21/18 00:09	
Sucralose	•		ND	5.0	5.0	ng/l	1	07/21/18 00:09	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/21/18 00:09	
TCEP -			0.80	0.34	1.0	ng/l	1	07/21/18 00:09	
TCPP			ND	0.27	1.0	ng/l	1	07/10/18 01:14	
TDCPP			43	0.47	1.0	ng/l	1	07/21/18 00:09	
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/21/18 00:09	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

3

Sample Results

	arripro i toodito							(-	oritina da
Sample:	GW-D-04-180517					S	ampled: (05/17/18 10:55 by Rel	becca Lustig
	8E18098-25 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS0)2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/21/18 00:25	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/21/18 00:25	
Atenolol			ND	0.20	1.0	ng/l	1	07/21/18 00:25	
Atorvasta	tin		ND	0.11	1.0	ng/l	1	07/10/18 01:30	
Azithrom	ycin		2.2	2.2	10	ng/l	1	07/21/18 00:25	
Caffeine			2.9	0.31	1.0	ng/l	1	07/21/18 00:25	
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/21/18 00:25	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/21/18 00:25	
Cotinine			ND	0.59	2.0	ng/l	1	07/21/18 00:25	
DEET -			2.9	0.060	1.0	ng/l	1	07/21/18 00:25	
Diazepan	n		ND	0.14	1.0	ng/l	1	07/21/18 00:25	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/21/18 00:25	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/21/18 00:25	
Methador	ne		ND	0.040	1.0	ng/l	1	07/21/18 00:25	
Phenytoi	n (Dilantin)		0.56	0.33	1.0	ng/l	1	07/21/18 00:25	
Primidone	•		ND	0.60	1.0	ng/l	1	07/21/18 00:25	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/21/18 00:25	
Sulfamet	hoxazole		1.4	0.19	1.0	ng/l	1	07/21/18 00:25	
TCEP -			ND	0.34	1.0	ng/l	1	07/21/18 00:25	
TCPP			1.5	0.27	1.0	ng/l	1	07/10/18 01:30	
TDCPP			15	0.47	1.0	ng/l	1	07/21/18 00:25	
Trimethop				0.24	1.0	ng/l	1	07/21/18 00:25	
				U.L-T	1.0	9/1		31,21,1000.20	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

	ampro i tocare							(0	ontinaca)
Sample:	GW-D-05-180517						Sampled:	05/17/18 12:01 by Rel	becca Lustig
	8E18098-26 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
PCPs - Phar	maceuticals by LC/MSMS-ESI+								
Method: EP	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS()2	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/21/18 00:42	
Amoxicilli	n		ND	2.0	10	ng/l	1	07/21/18 00:42	I-05
Atenolol			ND	0.20	1.0	ng/l	1	07/21/18 00:42	
Atorvasta	tin · · · · · · · · · · · · · · · · · · ·		ND	0.11	1.0	ng/l	1	07/10/18 01:47	
Azithrom	ycin		2.4	2.2	10	ng/l	1	07/21/18 00:42	J
Caffeine			2.8	0.31	1.0	ng/l	1	07/21/18 00:42	Е
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/21/18 00:42	
Ciprofloxa	acin		ND	1.4	5.0	ng/l	1	07/21/18 00:42	
Cotinine			ND	0.59	2.0	ng/l	1	07/21/18 00:42	
DEET -			3.0	0.060	1.0	ng/l	1	07/21/18 00:42	
Diazepan	n		ND	0.14	1.0	ng/l	1	07/21/18 00:42	
Fluoxetine	e		ND	0.080	1.0	ng/l	1	07/21/18 00:42	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/21/18 00:42	
Methador	ne		ND	0.040	1.0	ng/l	1	07/21/18 00:42	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/21/18 00:42	
Primidone	e		ND	0.60	1.0	ng/l	1	07/21/18 00:42	
Sucralose	e		ND	5.0	5.0	ng/l	1	07/21/18 00:42	
Sulfameth	noxazole		ND	0.19	1.0	ng/l	1	07/21/18 00:42	
TCEP			ND	0.34	1.0	ng/l	1	07/21/18 00:42	
TCPP			ND	0.27	1.0	ng/l	1	07/10/18 01:47	
TDCPP			12	0.47	1.0	ng/l	1	07/21/18 00:42	Е
Trimethop	orim		ND	0.24	1.0	ng/l	1	07/21/18 00:42	
							•		

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

Sample:	GW-E-03-180517					S	ampled:	05/17/18 13:35 by Rel	pecca Lustic
	8E18098-27 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
PCPs - Phari	maceuticals by LC/MSMS-ESI+								
Method: EP	^P A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS	02	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamin	ophen		ND	1.4	20	ng/l	1	07/21/18 01:31	
Amoxicilli	in		ND	2.0	10	ng/l	1	07/21/18 01:31	
Atenolol			ND	0.20	1.0	ng/l	1	07/21/18 01:31	
Atorvasta	itin		ND	0.11	1.0	ng/l	1	07/10/18 02:36	
Azithrom	ycin		9.6	2.2	10	ng/l	1	07/21/18 01:31	
Caffeine			1.1	0.31	1.0	ng/l	1	07/21/18 01:31	I
Carbama	zepine		ND	0.080	1.0	ng/l	1	07/21/18 01:31	
Ciproflox	cacin		9.2	1.4	5.0	ng/l	1	07/21/18 01:31	1
Cotinine			ND	0.59	2.0	ng/l	1	07/21/18 01:31	
DEET -			2.7	0.060	1.0	ng/l	1	07/21/18 01:31	
Diazepan	n		0.21	0.14	1.0	ng/l	1	07/21/18 01:31	
Fluoxetin	ne		1.1	0.080	1.0	ng/l	1	07/21/18 01:31	
Meprobar	mate		ND	0.36	1.0	ng/l	1	07/21/18 01:31	
Methador	ne		0.27	0.040	1.0	ng/l	1	07/21/18 01:31	
Phenytoir	n (Dilantin)		ND	0.33	1.0	ng/l	1	07/21/18 01:31	
Primidone	e		ND	0.60	1.0	ng/l	1	07/21/18 01:31	
Sucralos	e		6.5	5.0	5.0	ng/l	1	07/21/18 01:31	
Sulfameth	hoxazole		ND	0.19	1.0	ng/l	1	07/21/18 01:31	
TCEP -			ND	0.34	1.0	ng/l	1	07/21/18 01:31	
TCPP			ND	0.27	1.0	ng/l	1	07/10/18 02:36	
TDCPP			6.8	0.47	1.0	ng/l	1	07/21/18 01:31	ı
Trimetho	nrim		0.38	0.24	1.0	ng/l	1	07/21/18 01:31	

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Sample Results

W 00	ample Results							()	onunuea)
Sample:	GW-G-02-180518					:	Sampled:	05/18/18 9:32 by Rel	becca Lustig
	8E18098-28 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifier
CPs - Pharr	maceuticals by LC/MSMS-ESI+								
Method: EP/	A 1694M-ESI+	Batch ID: W8F0636	Instr: LCMS	02	Prepared:	06/12/18 07:55		Analyst: kan	
Acetamino	ophen		ND	1.4	20	ng/l	1	07/21/18 01:47	
Amoxicillir	n		ND	2.0	10	ng/l	1	07/21/18 01:47	
Atenolol			ND	0.20	1.0	ng/l	1	07/21/18 01:47	
Atorvastat	tin		ND	0.11	1.0	ng/l	1	07/10/18 02:53	
Azithromy	ycin		6.9	2.2	10	ng/l	1	07/21/18 01:47	J
Caffeine			1.1	0.31	1.0	ng/l	1	07/21/18 01:47	В
Carbamaz	zepine		0.11	0.080	1.0	ng/l	1	07/21/18 01:47	J
Ciproflox	acin		15	1.4	5.0	ng/l	1	07/21/18 01:47	В
Cotinine			ND	0.59	2.0	ng/l	1	07/21/18 01:47	
DEET -			3.3	0.060	1.0	ng/l	1	07/21/18 01:47	
Diazepam	1		0.41	0.14	1.0	ng/l	1	07/21/18 01:47	J
Fluoxetin	e		1.4	0.080	1.0	ng/l	1	07/21/18 01:47	
Meproban	mate		ND	0.36	1.0	ng/l	1	07/21/18 01:47	
Methadon	ne		1.1	0.040	1.0	ng/l	1	07/21/18 01:47	
Phenytoir	n (Dilantin)		0.96	0.33	1.0	ng/l	1	07/21/18 01:47	J
Primidone)		ND	0.60	1.0	ng/l	1	07/21/18 01:47	
Sucralose	e		36	5.0	5.0	ng/l	1	07/21/18 01:47	
Sulfameth	hoxazole		6.5	0.19	1.0	ng/l	1	07/21/18 01:47	
TCEP			ND	0.34	1.0	ng/l	1	07/21/18 01:47	
TCPP -			1.7	0.27	1.0	ng/l	1	07/10/18 02:53	
TDCPP			11	0.47	1.0	ng/l	1	07/21/18 01:47	В
Trimethor	prim		0.71	0.24	1.0	ng/l	1	07/21/18 01:47	J

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Reported:

08/13/2018 16:15

Sample Results

(Continued)

								,	
Sample:	GW-G-02-180518					S	ampled:	05/18/18 9:32 by Rel	oecca Lusti
	8E18098-29 (Water)								
Analyte			Result	MDL	MRL	Units	Dil	Analyzed	Qualifie
nions by IC,	EPA Method 300.0								
Method: EPA	A 300.0	Batch ID: W8E1060	Instr: LC12		Prepared: 0)5/18/18 16:44		Analyst: jan	
NO2+NO3	as N		15	0.020	0.11	mg/l	1	05/18/18 21:02	
Conventional	Chemistry/Physical Parameters	by APHA/EPA/ASTM Methods							
Method: _Va	nrious	Batch ID: [CALC]	Instr: [CALC]		Prepared: 0)5/24/18 10:34		Analyst: ymt	
Nitrogen,	Total		15		0.20	mg/l	1	05/30/18 15:49	
Method: EPA	A 350.1	Batch ID: W8E1030	Instr: AA06		Prepared: 0	05/18/18 11:15		Analyst: mnq	
Ammonia	as N		ND	0.048	0.10	mg/l	1	05/18/18 18:38	
Method: EPA	A 351.2	Batch ID: W8E1357	Instr: AA06		Prepared: 0	05/24/18 10:34		Analyst: ymt	
TKN			ND	0.050	0.10	mg/l	1	05/30/18 15:49	
Method: EPA	A 353.2	Batch ID: W8F0619	Instr: Inst		Prepared: 0	05/18/18 21:02		Analyst: jan	
NO2+NO3	as N		15000	83	200	ug/l	1	05/18/18 21:02	

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Quality Control Results

Anions by IC, EPA Method 300.0											
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
atch: W8E1060 - EPA 300.0											_
Blank (W8E1060-BLK1)					Prepared & A	nalvzed: 05/	18/18				
NO2+NO3 as N	0.0410	0.020	0.11	mg/l		,,	,				B-07,
LCS (W8E1060-BS1)					Prepared & A	nalyzed: 05/	18/18				
NO2+NO3 as N	4.19	0.020	0.11	mg/l	4.00		105	90-110			
Matrix Spike (W8E1060-MS1)	Sourc	ce: 8E18096	5-01		Prepared & A	nalyzed: 05/	18/18				
NO2+NO3 as N	42.1	0.20	1.1	mg/l	40.0	0.343	104	84-115			
Matrix Spike Dup (W8E1060-MSD1)		ce: 8E18096			Prepared & A	-	18/18				
NO2+NO3 as N	41.8	0.20	1.1	mg/l	40.0	0.343	104	84-115	0.7	20	
Conventional Chemistry/Physical Parameters by APH	IA/EPA/AST	ΓM Metho	ds								
Acetas	D It	MDI	MDI	11-26-	Spike	Source	0/ DEC	%REC		RPD	0
Analyte atch: W8E1030 - EPA 350.1	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
							40/40				
Blank (W8E1030-BLK1) Ammonia as N	ND	0.048	0.10	mg/l	Prepared & A	nalyzed: 05/	18/18				
Blank (W8E1030-BLK2)					Prepared & A	nalvzed: 05/	18/18				
Ammonia as N	ND	0.048	0.10	mg/l		,					
LCS (W8E1030-BS1)					Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.266	0.048	0.10	mg/l	0.250		107	90-110			
LCS (W8E1030-BS2)					Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.264	0.048	0.10	mg/l	0.250		105	90-110			
Duplicate (W8E1030-DUP1)	Sourc	ce: 8E17090)-01		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	ND	0.048	0.10	mg/l		ND				15	
Matrix Spike (W8E1030-MS1)	Sourc	ce: 8E17073	3-01		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.267	0.048	0.10	mg/l	0.250	ND	107	90-110			
Matrix Spike (W8E1030-MS2)	Sourc	ce: 8E17073	3-02		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.260	0.048	0.10	mg/l	0.250	ND	104	90-110			
Matrix Spike (W8E1030-MS3)	Sourc	ce: 8E18066	5-01		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.264	0.048	0.10	mg/l	0.250	ND	105	90-110			
Matrix Spike Dup (W8E1030-MSD1)	Sourc	ce: 8E17073	3-01		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.264	0.048	0.10	mg/l	0.250	ND	106	90-110	0.9	15	
Matrix Spike Dup (W8E1030-MSD2)	Sourc	ce: 8E17073	3-02		Prepared & A	nalyzed: 05/	18/18				
Ammonia as N	0.262	0.048	0.10	mg/l	0.250	ND	105	90-110	0.7	15	
Matrix Spike Dup (W8E1030-MSD3)		ce: 8E18066			Prepared & A	•					
Ammonia as N	- 0.262	0.048	0.10	mg/l	0.250	ND	105	90-110	0.6	15	
atch: W8E1357 - EPA 351.2											
Blank (W8E1357-BLK1)		0.050	0.40		epared: 05/24/1	8 Analyzed:	05/30/18	3			
TKN	ND	0.050	0.10	mg/l							
Blank (W8E1357-BLK2)				Pr	epared: 05/24/1	8 Analyzed:	05/30/18	3			
18098											Page 3

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Reported:

08/13/2018 16:15

Quality Control Results

(Continued)

Conventional Chemistry/Physical Parameters b	y APHA/EPA/AST	M Method	ls (Continue	d)							
					Spike	Source		%REC		RPD	
Analyte	Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
Batch: W8E1357 - EPA 351.2 (Continued)											
Blank (W8E1357-BLK2)				Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	· · ND	0.050	0.10	mg/l							
LCS (W8E1357-BS1)				Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	0.988	0.050	0.10	mg/l	1.00		99	90-110			
LCS (W8E1357-BS2)				Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	0.958	0.050	0.10	mg/l	1.00		96	90-110			
Duplicate (W8E1357-DUP1)	Sourc	e: 8E22012	-03	Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	0.182	0.050	0.10	mg/l		0.186			2	10	
Matrix Spike (W8E1357-MS1)	Sourc	e: 8E22012	-01	Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	1.21	0.050	0.10	mg/l	1.00	0.241	97	90-110			
Matrix Spike (W8E1357-MS2)	Sourc	e: 8E22012	-02	Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	1.16	0.050	0.10	mg/l	1.00	0.192	96	90-110			
Matrix Spike Dup (W8E1357-MSD1)	Sourc	e: 8E22012	-01	Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	1.20	0.050	0.10	mg/l	1.00	0.241	95	90-110	1	10	
Matrix Spike Dup (W8E1357-MSD2)	Sourc	e: 8E22012	-02	Pre	pared: 05/24/1	8 Analyzed:	05/30/18	В			
TKN	1.19	0.050	0.10	mg/l	1.00	0.192	99	90-110	3	10	

Project Manager: Jared Ervin

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

8E18098

Quality Control Results

(Continued)

Page 34 of 38

PPCPs - Pharmaceuticals by LC/MSMS-ESI+										
				Spike	Source		%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualif
tch: W8E1718 - EPA 1694M-ESI+										
Blank (W8E1718-BLK1) TDCPP 4.28	0.47	1.0	Pre ng/l	pared: 05/31/	18 Analyzed:	06/19/18	3			
1.20	0.47	1.0	119/1							
Blank (W8E1718-BLK2) Acetaminophen ND	1.4	20		pared: 05/31/	18 Analyzed:	07/08/18	3			QC
		20	ng/l							
7.11107.0011111	2.0	10	ng/l							QC
Atenolol 5.26	0.20	1.0	ng/l							B, Q(
Atorvastatin 0.611	0.11	1.0	ng/l							QC-2
Azithromycin 6.00	2.2	10	ng/l							QC-2
Caffeine 0.739	0.31	1.0	ng/l							QC-2
Carbamazepine ND	0.080	1.0	ng/l							Q
Ciprofloxacin 8.52	1.4	5.0	ng/l							B, Q(
Cotinine 0.905	0.59	2.0	ng/l							QC-2
DEET 0.777	0.060	1.0	ng/l							QC-2
Diazepam ND	0.14	1.0	ng/l							Q
Fluoxetine 0.895	0.080	1.0	ng/l							QC-
Meprobamate ND	0.36	1.0	ng/l							Q
Methadone 0.132	0.040	1.0	ng/l							QC-2
Phenytoin (Dilantin) ND	0.33	1.0	ng/l							Q
Primidone ND	0.60	1.0	ng/l							Q
Sulfamethoxazole	0.19	1.0	ng/l							Q
TCEPND	0.34	1.0	ng/l							Q
TCPPND	0.27	1.0	ng/l							Q
Trimethoprim 0.361	0.24	1.0	ng/l							QC-2
·			-				_			
CS (W8E1718-BS1) TDCPP	0.47	1.0	ng/l	pared: 05/31/ 10.0	18 Analyzed:	124	3 20-158			
			-							
CS (W8E1718-BS2) Acetaminophen	1.4	20	Pre ng/l	pared: 05/31/ 200	18 Analyzed:	: 07/08/1 8 118	3 66-156			Q
Amoxicillin 159	2.0	10	ng/l	100		159	14-167			Q
Atenolol 14.4	0.20	1.0	ng/l	10.0		144	56-164			Q
Atorvastatin 6.99	0.20	1.0	ng/l	10.0		70	0.1-173			Q
	2.2		-							Q
•		10	ng/l	100		116	52-166			
Caffeine 10.3	0.31	1.0	ng/l	10.0		103	55-152			Q
Carbamazepine 12.6	0.080	1.0	ng/l	10.0		126	60-135			Q
Ciprofloxacin 68.4	1.4	5.0	ng/l	50.0		137	51-168			Q(
Cotinine 12.7	0.59	2.0	ng/l	10.0		127	68-155			Q
DEET	0.060	1.0	ng/l	10.0		91	45-135			Q
Diazepam 13.2	0.14	1.0	ng/l	10.0		132	58-127			BS-0

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

8E18098

Ouglity Control Results

Page 35 of 38

PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued))										
Analyte	Result	MDL	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
tch: W8E1718 - EPA 1694M-ESI+ (Continued)	Result	MDL	IVIKL	Onits	Levei	Result	/OREC	Lillits	KPD	LIIIII	Qualifie
				Dua	marrad: 0E /21 /1	10 Amalumad	. 07/00/1				
CS (W8E1718-BS2) Fluoxetine	11.4	0.080	1.0	ng/l	pared: 05/31/ 1 10.0	io Anaiyzed	114	55-150			QC-
Meprobamate	14.7	0.36	1.0	ng/l	10.0		147	11-166			QC-
Methadone	10.6	0.040	1.0	ng/l	10.0		106	62-137			QC-
Phenytoin (Dilantin)	14.5	0.33	1.0	ng/l	10.0		145	69-138			BS-04 QC-
Primidone	- 11.1	0.60	1.0	ng/l	10.0		111	54-147			QC-
Sulfamethoxazole	13.6	0.19	1.0	ng/l	10.0		136	60-133			BS-04
TCEP	18.1	0.34	1.0	ng/l	10.0		181	25-149			QC- BS-H QC-
TCPP	8.04	0.27	1.0	ng/l	10.0		80	24-149			QC-
Trimethoprim	8.96	0.24	1.0	ng/l	10.0		90	67-139			QC-
.CS Dup (W8E1718-BSD1)				Pre	pared: 05/31/1	18 Analyzed	06/19/1	R			
TDCPP	8.86	0.47	1.0	ng/l	10.0	10 Analyzeu	89	20-158	33	30	Q-1
.CS Dup (W8E1718-BSD2)				Pre	pared: 05/31/1	18 Analyzed	07/08/18	В			
Acetaminophen	- 245	1.4	20	ng/l	200	•	122	66-156	4	30	QC-
Amoxicillin	154	2.0	10	ng/l	100		154	14-167	3	30	QC-
Atenolol	11.8	0.20	1.0	ng/l	10.0		118	56-164	20	30	QC
Atorvastatin	8.43	0.11	1.0	ng/l	10.0		84	0.1-173	19	30	QC-
Azithromycin	98.4	2.2	10	ng/l	100		98	52-166	16	30	QC-
Caffeine	10.7	0.31	1.0	ng/l	10.0		107	55-152	4	30	QC-
Carbamazepine	12.9	0.080	1.0	ng/l	10.0		129	60-135	2	30	QC-
Ciprofloxacin	70.9	1.4	5.0	ng/l	50.0		142	51-168	4	30	QC-
Cotinine	11.6	0.59	2.0	ng/l	10.0		116	68-155	9	30	QC-
DEET	14.8	0.060	1.0	ng/l	10.0		148	45-135	47	30	BS-04 QC-
Diazepam	12.2	0.14	1.0	ng/l	10.0		122	58-127	8	30	QC.
Fluoxetine	14.1	0.080	1.0	ng/l	10.0		141	55-150	21	30	QC-
Meprobamate	49.3	0.36	1.0	ng/l	10.0		493	11-166	108	30	BS-04
Methadone	12.1	0.040	1.0	ng/l	10.0		121	62-137	13	30	QC- QC-
Phenytoin (Dilantin)	12.7	0.33	1.0	ng/l	10.0		127	69-138	13	30	QC-
Primidone		0.60	1.0	ng/l	10.0		126	54-147	13	30	QC-
Sulfamethoxazole	12.9	0.19	1.0	ng/l	10.0		129	60-133	5	30	QC-
TCEP		0.34	1.0	ng/l	10.0		182	25-149	0.6	30	BS-H
TCPP	9.64	0.27	1.0	ng/l	10.0		96	24-149	18	30	QC- QC-
Trimethoprim		0.24	1.0	ng/l	10.0		103	67-139	14	30	QC.
·				y					-		
tch: W8F0636 - EPA 1694M-ESI+					pared: 06/12/1						

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101

Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

PCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)										
				Spike	Source	0/224	%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifi
ch: W8F0636 - EPA 1694M-ESI+ (Continued)			_				_			
ank (W8F0636-BLK1) TCPP	0.27	1.0	ng/l	pared: 06/12/1	18 Analyzed	: 07/09/18	3			
			-							
ank (W8F0636-BLK2) Acetaminophen ND	1.4	20	ng/l	pared: 06/12/1	18 Analyzed	: 07/20/18	3			QC
Amoxicillin ND	2.0	10	ng/l							QC
Atenolol	0.20	1.0	ng/l							QC
Azithromycin 10.4	2.2	10	ng/l							B-06, Q0
Caffeine 4.43	0.31	1.0	ng/l							B, Q0
Carbamazepine 0.0825	0.080	1.0	ng/l							QC-2
Ciprofloxacin 21.9	1.4	5.0	ng/l							B, Q0
Cotinine 1.35	0.59	2.0	-							QC-2
DEET 0.682	0.060	1.0	ng/l							QC-2
			ng/l							QU-,
	0.14	1.0	ng/l							
	0.080	1.0	ng/l							QC-
Meprobamate ND	0.36	1.0	ng/l							Q
Methadone 0.126	0.040	1.0	ng/l							QC-
Phenytoin (Dilantin) ND	0.33	1.0	ng/l							Q
Primidone ND	0.60	1.0	ng/l							Q
Sulfamethoxazole 0.517	0.19	1.0	ng/l							QC-
TCEP ND	0.34	1.0	ng/l							Q
TDCPP 6.42	0.47	1.0	ng/l							B, Q
Trimethoprim ND	0.24	1.0	ng/l							Q
CS (W8F0636-BS1)			Pre	pared: 06/12/1	18 Analyzed	: 07/09/18	3			
Atorvastatin 7.42	0.11	1.0	ng/l	10.0		74	0.1-173			
TCPP 7.79	0.27	1.0	ng/l	10.0		78	24-149			
CS (W8F0636-BS2)			Pre	pared: 06/12/1	18 Analyzed	: 07/20/18	3			
Acetaminophen 251	1.4	20	ng/l	200		126	66-156			Q
Amoxicillin	2.0	10	ng/l	100		257	14-167			Q-08, Q
Atenolol	0.20	1.0	ng/l	10.0		122	56-164			Q
Azithromycin 105	2.2	10	ng/l	100		105	52-166			Q
Caffeine 12.0	0.31	1.0	ng/l	10.0		120	55-152			Q
Carbamazepine 10.7	0.080	1.0	ng/l	10.0		107	60-135			Q
Ciprofloxacin 56.9	1.4	5.0	ng/l	50.0		114	51-168			Q
Cotinine 11.6	0.59	2.0	ng/l	10.0		116	68-155			Q
DEET	0.060	1.0	ng/l	10.0		133	45-135			Q
Diazepam 12.2	0.14	1.0	ng/l	10.0		122	58-127			Q
Fluoxetine 11.9	0.080	1.0	ng/l	10.0		119	55-150			Q
Meprobamate 15.7	0.36	1.0	ng/l	10.0		157	11-166			Q

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 **Project Number:** VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Quality Control Results

(Continued)

PPCPs - Pharmaceuticals by LC/MSMS-ESI+ (Continued)										
				Spike	Source		%REC		RPD	
Analyte Result	MDL	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
atch: W8F0636 - EPA 1694M-ESI+ (Continued)										
LCS (W8F0636-BS2) Methadone 10.8	0.040	1.0	Pre ng/l	pared: 06/12/1 10.0	8 Analyzed: 0	7/20/18 108	3 62-137			QC-2
Phenytoin (Dilantin) 13.4		1.0	_	10.0		134	69-138			QC-2
Primidone 9.21	0.60	1.0	ng/l	10.0		92	54-147			QC-2
Sulfamethoxazole 12.3			ng/l	10.0			60-133			QC-2
		1.0	ng/l			123				
TCEP16.3	0.34	1.0	ng/l	10.0		163	25-149			BS-04, QC-2
TDCPP	0.47	1.0	ng/l	10.0		185	20-158			BS-H
Trimethoprim 8.25	0.24	1.0	ng/l	10.0		82	67-139			QC-: QC-:
			_				_			
LCS Dup (W8F0636-BSD1) Atorvastatin	0.11	1.0	ng/l	pared: 06/12/1 10.0	8 Analyzed: 0	72 72	3 0.1-173	3	30	
TCPP8.09		1.0	ng/l	10.0		81	24-149	4	30	
			-							
LCS Dup (W8F0636-BSD2) Acetaminophen 247	1.4	20	Pre ng/l	pared: 06/12/ 1 200	8 Analyzed: 0	124 124	3 66-156	2	30	QC-
Amoxicillin 251		10	ng/l	100		251	14-167	2	30	Q-08, QC-
Atenolol 12.9		1.0	ng/l	10.0		129	56-164	6	30	QC-
Azithromycin 98.2		10	ng/l	100		98	52-166	7	30	QC-
Caffeine 12.0		1.0	_	10.0		120	55-152	0	30	QC-
Carbamazepine 13.2		1.0	ng/l	10.0		132	60-135	21	30	QC-
Ciprofloxacin 56.6		5.0	ng/l	50.0		113	51-168	0.5	30	QC-
•			ng/l							
		2.0	ng/l	10.0		123	68-155	6	30	QC-
DEET		1.0	ng/l	10.0		123	45-135	8	30	QC-
Diazepam 11.8		1.0	ng/l	10.0		118	58-127	3	30	QC-
Fluoxetine 14.9		1.0	ng/l	10.0		149	55-150	22	30	QC-
Meprobamate 25.3	0.36	1.0	ng/l	10.0		253	11-166	47	30	BS-04 QC-
Methadone 11.9	0.040	1.0	ng/l	10.0		119	62-137	10	30	QC-
Phenytoin (Dilantin) 16.0	0.33	1.0	ng/l	10.0		160	69-138	18	30	BS-04
Primidone 14.6	0.60	1.0	ng/l	10.0		146	54-147	45	30	QC- QC-2, Q-1
Sulfamethoxazole 12.3		1.0	ng/l	10.0		123	60-133	0	30	QC-:
TCEP 14.9		1.0	-	10.0		149	25-149	9	30	QC-:
			ng/l							
TDCPP	0.47	1.0	ng/l	10.0		268	20-158	37	30	BS-H QC-
Trimethoprim 9.74	0.24	1.0	ng/l	10.0		97	67-139	17	30	QC-

8E18098 Page 37 of 38

FINAL REPORT

Geosyntec Consultants - Santa Barbara 924 Anacapa Street, Ste 4A Santa Barbara, CA 93101 Project Number: VC EHD OWTS Study (LA0391)

Project Manager: Jared Ervin

Reported:

08/13/2018 16:15

Item

Notes and Definitions

В	Blank contamination. The analyte was found in the associated blank as well as in the sample.
B-06	This analyte was found in the method blank, which was possibly contaminated during sample preparation. The batch was accepted since this analyte was either not detected or more than 10 times of the blank value for all the samples in the batch.
B-07	This analyte was found in the method blank at levels above the MDL but below the reporting limit.
BS-04	The recovery of this analyte in LCS or LCSD was outside control limit. Sample was accepted based on the remaining LCS, LCSD or LCS-LL.
BS-H	The recovery of this analyte in the BS/LCS was over the control limit. Sample result is suspect.
I-05	Low internal standard recovery possibly due to matrix interference. The result is suspect.
J	Estimated conc. detected <mrl and="">MDL.</mrl>
Q-08	High bias in the QC sample does not affect sample result since analyte was not detected or below the reporting limit.
Q-12	The RPD result exceeded the QC control limits; however, both percent recoveries were acceptable. Sample results for the QC batch were accepted based on the percent recoveries and/or other acceptable QC data.
QC-2	This QC sample was reanalyzed to complement samples that require re-analysis on different date. See analysis date.
ND	NOT DETECTED at or above the Method Reporting Limit (MRL). If Method Detection Limit (MDL) is reported, then ND means not detected at or above the MDL.
Dil	Dilution
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
% Rec	Percent Recovery
Source	Sample that was matrix spiked or duplicated.
MDL	Method Detection Limit
MRL	The minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence. The MRL is also known as Limit of Quantitation (LOQ) and Detection Limit for Reporting (DLR)
MDA	Minimum Detectable Activity
NR	Not Reportable
TIC	Tentatively Identified Compound (TIC) using mass spectrometry. The reported concentration is relative concentration based on the nearest internal standard. If the library search produces no matches at, or above 85%, the compound is reported as unknown.

Any remaining sample(s) will be disposed of one month from the final report date unless other arrangements are made in advance.

An Absence of Total Coliform meets the drinking water standards as established by the California State Water Resources Control Board (SWRCB)

All results are expressed on wet weight basis unless otherwise specified.

All samples collected by Weck Laboratories have been sampled in accordance to laboratory SOP Number MIS 002.

8E18098 Page 38 of 38

1	Λ	/		Ĭ
1			Ш	

Client agrees to Terms & Conditions at:

www.wecklabs.com

Standard CHAIN OF CUSTODY RECORD Weck Laboratories, Inc. Analytical Laboratory Services - Since 1964 BE18098 14859 East Clark Avenue: Industry: CA 91745 WECK WKO# Tel 626-336-2139 ♦ Fax 626-336-2634 ♦ www.wecklabs.com CLIENT NAME: PROJECT: ANALYSES REQUESTED SPECIAL HANDLING Same Day Rush 150% 1694-ESI+ GEOSYNTEC VC EHD OWTS Study (LA0391) 24 Hour Rush 100% ADDRESS: PHONE: Jared Ervin 805 979-9129 48-72 Hour Rush 75% 924 ANACAPA ST. SUITE 4A FAX 4 - 5 Day Rush 30% SANTA BARBARA, CA 93101 EMAIL: Jervin@Geosyntec.com EPA. Rush Extractions 50% 10 - 15 Business Days PROJECT MANAGER SAMPLER ģ QA/QC Data Package Jared Ervin Rebecca Lustig **PPCPs** Charges will apply for weekends/holidays DATE TIME SMPL # OF Method of Shipment: SAMPLE IDENTIFICATION/SITE LOCATION Lab Use Only) SAMPLED SAMPLED TYPE CONT COMMENTS GW-C-BK-05_180514 853 Х 2 853 GW-C-BY-CE_1805/4_EB GW-E-02_180514 1016 **'X** SW-05-b-180514 1038 2 1202 2 × SW-04-D_180514 1250 2 × 1343 SW-03-1 _ 180514 Э X 5/15/18 907 GN-A-03_1805/5 × Q. 1000 GW-A-04_180515 2 × GW-A-01-180515 1033 0 × 1125 QW-F-02-180515 1343 GW-C-07_180515 RELINQUISHED BY DATE / TIME DATE / TIME SAMPLE TYPE CODE: SAMPLE CONDITION: AQ=Aqueous 5 18 18 12:28 Actual Temperature: NA= Non Aqueous SL = Sludge RELINQUISHED BY DATE / TIME RECEIVED BY Received On Ice DW = Drinking Water reserved WW-=-Waste Water 5 18 18 14:57 Evidence Seals Present RW = Rain Water Container Attacked GW = Ground Water RELINQUISHED BY RECEIVED BY reserved at Lab SO = Soil SW = Solid Waste OL = Oil OT = Other Matrix PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY SPECIAL REQUIREMENTS / BILLING INFORMATION OVER UNSCHEDULED RUSH REQUESTS

Page of

١	V	/ 11	

Weck Laboratories, Inc.

Standard CHAIN OF CUSTODY RECORD

8E18098 14859 East Clark Avenue: Industry: CA 91745 WECK WKO# Tel 626-336-2139 ♦ Fax 626-336-2634 ♦ www.wecklabs.com CLIENT NAME: PROJECT: SPECIAL HANDLING ANALYSES REQUESTED Same Day Rush 150% GEOSYNTEC VC EHD OWTS Study (LA0391) EPA 1694-ESI 24 Hour Rush 100% ADDRESS: PHONE: Jared Ervin 805 979-9129 48-72 Hour Rush 75% 924 ANACAPA ST. SUITE 4A FAX: 4 - 5 Day Rush 30% SANTA BARBARA, CA 93101 EMAIL: Jervin@Geosyntec.com Rush Extractions 50% 10 - 15 Business Days PROJECT MANAGER SAMPLER δ QA/QC Data Package Jared Ervin Rebecca Lustia **PPCPs** Charges will apply for weekends/holidays DATE SMPL Cla # OF Method of Shipment: SAMPLE IDENTIFICATION/SITE LOCATION SAMPLED SAMPLED TYPE CONT Lab Use Only) COMMENTS GW-C-08_180515 2 Х GW-A-02_180515 GW-B-03_180516 2

	1			1900 0 00 - 100	-	I/\	1 1 1						
		1006		3W-01-D_180516	Ð	×							
	þ	1107		9W-B-04_180516	7	X							
		1206		SW-03-U_180516		X							
		1355		SW-02-4-180516	2	X						, , , , , , , , , , , , , , , , , , , ,	
	V	1430	4	GW-A-07_180516	2	×						***	
	5/17/18	822	19	GW-C-BK-06_180517	a	7							
		883		GW-D-07_180517	2	\$							
	V	950		GW-G-01-180517	2	8							
RELINQUISHED BY				DATE / TIME RECEIVED BY			DATE / TIME		SAMPLI	CONDITION:		SAMPLE TYPE CO	DE;
Polos	/	+° >		DATE / TIME RECEIVED BY				(2100	Actual Temperat	E CONDITION:	4.1	AQ≃Aqueous NA≃ Non Aqueous	

PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY

OVER UNSCHEDULED RUSH REQUESTS

RELINQUISHED BY

Client agrees to Terms & Conditions at: www.wecklabs.com

DATE / TIME

DATE / TIME

RECEIVED BY

Received On Ice vidence Seals Present Container Attacked reserved at Lab

DW = Drinking Water .W.W. = .Waste_Water_ RW = Rain Water GW = Ground Water

SL = Sludge

SQ = Soil SW = Solid Waste

OL = 011

OT = Other Matex

SPECIAL REQUIREMENTS / BILLING INFORMATION

1	Λ	/ ;		
	١,		Щ	

OVER UNSCHEDULED RUSH REQUESTS Client agrees to Terms & Conditions at:

www.wecklabs.com

Standard CHAIN OF CUSTODY RECORD

Weck Laboratories, Inc. Analytical Laboratory Services - Since 1964 8E18098 14859 East Clark Avenue: Industry: CA 91745 WECK WKO# Tel 626-336-2139 ♦ Fax 626-336-2634 ♦ www.wecklabs.com CLIENT NAME: PROJECT: ANALYSES REQUESTED SPECIAL HANDLING * Nitrite (300.0) Same Day Rush 150% EPA 1694-ESI+ GEOSYNTEC VC EHD OWTS Study (LA0391) 24 Hour Rush 100% ADDRESS: PHONE: Jared Ervin 805 979-9129 48-72 Hour Rush 75% 924 ANACAPA ST. SUITE 4A FAX: 4 - 5 Day Rush 30% SANTA BARBARA, CA 93101 EMAIL: Jervin@Geosyntec.com Rush Extractions 50% 10 - 15 Business Days PROJECT MANAGER SAMPLER QA/QC Data Package Nitrate Jared Ervin Rebecca Lustig Charges will apply for weekends/holidays ID# DATE TIME SMPL CI2 Method of Shipment: SAMPLE IDENTIFICATION/SITE LOCATION SAMPLED SAMPLED TYPE Lab Use Only) COMMENTS BW-D-04_180517 Х GW-D-05_180517 1201 GW-E-03_180517-GW-G-02_180518 600-6-02-180518 XXX IL Plastic holt DATE / TIME 5 10 (2018) REUNQUISHED BY DATE / TIME SAMPLE TYPE CODE: SAMPLE CONDITION: AQ=Aqueous Actual Temperature: 1228 5 19 18 12:28 NA= Non Aqueous SL = Sludge DATE / TIME DATE / TIME DW = Drinking Water WW≔-Waste-Water 18/18 918/15/14:57 vidence Seals Present RW = Rain Water GW = Ground Water Container Attacked DATE / TIME RECEIVED BY DATE / TIME Preserved at Lab SO = Soil SW = Solid Waste OL = Oil OT = Other Matrix PRESCHEDULED RUSH ANALYSES WILL TAKE PRIORITY SPECIAL REQUIREMENTS / BILLING INFORMATION

Appendix 3-2: TAC Comments on September 2018 Draft Technical Report

(Letters from Ojai Valley Sanitary District and Regional Water Quality Control Board)

OJAI VALLEY SANITARY DISTRICT

A Public Agency

1072 Tico Road, Ojai, California 93023 (805) 646-5548 • FAX (805) 640-0842 www.ojaisan.org

October 10, 2018

Charles Genkel, Manager Technical Services Section Environmental Health Division County of Ventura 800 S. Victoria Avenue Ventura, CA 93009-1730

RE: SEPTEMBER 2018 TECHNICAL REPORT RELATED TO THE STUDY OF WATER QUALITY IMPAIRMENTS ATTRIBUTABLE TO ONSITE WASTEWATER TREATMENT SYSTEMS IN THE VENTURA RIVER WATERSHED

OVSD has reviewed the draft Technical Report, dated September 2018 from Geosyntec Consultants related to the Study of Water Quality Impairments Attributable to Onsite Wastewater Treatment Systems in the Ventura River Watershed. While the report outlines the completed surface water, groundwater and analysis, we would like to provide comments related to the overall water quality conditions in the Watershed and other related studies and efforts to characterize the nutrient impacts on the watershed.

OVSD General Comments are as follows:

- 1. The Study appears to have not included a large area of properties in the Arbolada area and did not include any septic served properties in the entire City of Ojai.
- 2. There are extensive natural creeks and improved drainages in the Arbolada area that drain directly to San Antonio Creek and to the Stewart Canyon drain where historically high nitrate levels have been observed.
- One well was sampled within Area G, close to the Arbolada which showed elevated nutrients. The nearest surface water sample was in Area D, well downstream of the Arbolada.
- 4. Historical groundwater and surface water quality sampling by other groups and parties, dating back a decade or more do not appear to be included or referenced in great detail in the report. The Santa Barbara Channel Keeper Stream Team, UCSB and OVSD have compiled an extensive list of samples showing significant nutrient water quality issues.

- 5. The Study does not appear to reference any known information from septic failures or pumping that would be contained in required reporting databases.
- 6. The Study conclusions do not appear to include any data from the Ventura County Watershed Protection District, Groundwater Section Annual Report for the groundwater quality. Known wells and sampling data indicate Nitrate tests between 2.7 37.2 in various well samples.
- 7. The Study conclusions based on the historical groundwater and surface water samples illustrated in Figures 25 & 26 appear to be inaccurate. Figures 25 & 26 indicate some of the highest nitrate samples downstream of City/County septic properties in the Arbolada, near the intersection of Stewart Canyon and San Antonio Creek. Yet this sample data was not discussed in the analysis
- 8. The 600 foot and 2000-foot buffers along the impaired waterways show relatively very low concentrations of septic properties. Most of the septic properties are outside the buffer areas, yet the waterways are impaired. How can a relatively few properties in the buffer areas be connected to the impairment but the many properties located outside the buffer areas be listed as "low" probability of impacting the water quality?
- 9. Historically, there is common knowledge of contaminated water and odors located in septic areas, flooded leach fields and septic backups into homes in wet years.

We believe, and data shows, that septic systems contribute to groundwater and surface water quality impairments to a greater degree than concluded in the Study. Additional detailed comments are provided below.

Poor graphic quality of maps

The maps provided in the report are pivotal to understanding the approach and conclusions of the study. However, the size and resolution of the maps in the document is so low (there is no ability to zoom in to examine any detail) that it severely hampers review and interpretation. The maps should be provided as large format (e.g., tabloid size) high resolution images to allow for detailed inspection on the computer screen. This could have been accomplished using an appendix if the resulting file size was too large. It is also very hard to distinguish the Upper Ventura River groundwater basin boundary from the Lower Ventura River basin boundary.

Misuse of a regulatory term

Throughout the report, a concentration of 1.15 mg/L for total N, or sometimes for nitrate, is referred to as a TMDL *target*, and it is implied that the TMDL directly regulates the concentration of nitrate in surface waters. In the context of TMDLs, numeric targets have a very specific regulatory meaning and are values assigned to the parameters that are used to determine attainment of the TMDL. *The actual adopted Algae TMDL did not establish targets for any nutrient parameters.* Instead, the TMDL established targets for macroalgal biomass, macroalgal cover, phytoplankton biomass, DO and pH. As adopted, the TMDL can be attained if the targets for algal biomass, etc. are met in the stream, regardless of nutrient concentrations.

Nitrate in stream water does not indicate degree of loading to the stream

Nitrate is reasonably conservative and highly mobile in soils below the root zone, provided anaerobic conditions are not encountered. However, nitrate is highly **non**-conservative in surface waters. Use of nitrate concentrations in stream water is an inappropriate indicator of nitrate loading for this study, and thus the assessments of risk of OWTS loading based on down gradient stream water chemistry are highly compromised. Especially during the spring and summer months (when algae and aquatic macrophytes are most active), nitrate entering the streams from groundwater or surface runoff will be rapidly taken up into biomass. The unsuitability of nitrate as an indicator of nutrient loading is one of the reasons biomass-related targets were included in the TMDL instead of nutrient concentration targets. At the least, data for TN should have been used in stream water instead of nitrate. However, <u>even TN is a poor indicator of loading to streams</u>, as it also fails to account for nitrogen incorporated into the biomass of heterotrophic microbes or primary producers.

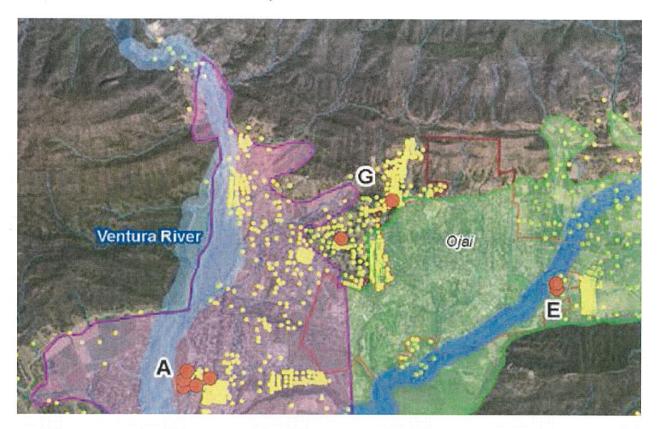
Other sources of data that could be used to identify risk

There are several sources of data in the public sphere that could have been leveraged to identify areas where OWTS are failing or poorly sited. OVSD, and likely other public agencies, routinely reports to EHD when evidence of failing septic tanks is encountered in the field by workers or inspectors. OVSD staff are familiar with sites in the Ojai area where evidence of failed OWTS (odors, actual leaking of septage) is obvious during wet weather or encountered during construction and have reported such locations to EHD It might have been advantageous to interview OVSD staff to identify known OWTS problem areas as a part of this study. Reports from septic tank inspections (such as conducted when real estate changes hands) should be on file at EHD. Per the VCRMA website, there are three basic permits for OWTS in Ventura County. construction or repair permits for conventional systems, construction or repair permits for alternative systems, and certifications of existing systems. The VCRMA website includes a search tool for records on individual OWTS for 1978-2016 that uses filters such as address, area, and APN. Results of pertinent site studies (such as septic tank pumping inspections for existing system certifications, percolation tests included in geotechnical reports for new construction) are available for individual OWTS through the search tool. Although we recognize that use of these types of information were not included in the scope or budget of the current study, the report should contain an acknowledgment of other data sets for identifying high-risk OWTS, and recommendations for their use.

Assumptions about potential interference of OVSD sewer mains

Proximity to sanitary sewer lines, and the possibility of groundwater contamination from leaking sewer lines, was used in the report to qualify data from wells in Groups A, B, C, D, and E (see comments on p. 45-47). OVSD could have been contacted directly to provide specifics about the likelihood of sanitary sewer or private lateral leaks in the vicinity of wells used in this study. OVSD's program for addressing inflow and infiltration (I/I) started with development of its Sanitary Sewer Maintenance Program (SSMP) and includes an aggressive program of sanitary sewer line inspections and testing. Since the certification of the SSMP in July 2009, OVSD has developed a comprehensive I/I reduction program. The I/I reduction program has almost halved peak influent flows during rain events. OVSD continues to monitor "Enhanced Maintenance Areas (Hot Spots)" and known High Ground Water areas and utilizes targeted flow metering. In addition, in 2014, OVSD completed a pilot project to repair 33 deficient private sewer laterals, which successfully reduced I/I from these laterals. Therefore, on September 28, 2015, OVSD

adopted Ordinance No. OVSD-78 which established Guidelines for Private Sewer Laterals (PSL) to reduce potential discharges and protect the environment. Since 2014, a total of 870 PSL pipelines have been inspected and 373 deficient PSL pipelines have been repaired.


Issues with the sampling period

Effect of prolonged drought: The collection of the groundwater and surface water data used to derive the 2000 ft radius of influence occurred during the 6th year of an exceptional drought. Conclusions regarding the distance between wells and culprit OWTS may have been very different if the data sets were obtained when water tables were higher and the hydraulic connection between leach fields and well capture zones was more pronounced.

Thomas Fire anomalies: Some post-Thomas Fire runoff data from the MS4 mass emission station (ME-VR2) and the two major outfall stations (MO-MEI and ME-OJA) were presented in the report (in Table 8), presumably to address the question of whether nitrate in stream samples taken in April and May 2018 were distorted by post-fire processes. The historic averages from the three MS4 sites provided for context (from 2009-2017) included wet weather data, and the post-fire data shown was for only three events starting with the first post fire event on 1/9/18 through 3/1/18. This is not a great data set to place the April and May stream samples from the OWTS study into context. The post-fire quality of surface water was subject to several drivers that could have worked together to obscure high nitrate levels more characteristic of upwelling groundwater in some of the locations in the watershed. First, as is now a well-discussed phenomenon among water purveyors in the watershed, the post-fire rain event in early January deposited a layer of sediment in the active channel bed that effectively capped the aguifer, dramatically reducing the rate of groundwater recharge through the gravel beds, and causing runoff to "slide" on top of the new deposits down the entire main stem rather than infiltrating. This led to an abnormally extended period of continuous surface flows in the Ventura River with the result that water from the undeveloped Matilija drainages constituted a much greater proportion of the surface water sampled in the lower reaches in April and May than would ordinarily be the case. Following the single significant post-fire rain event in January, surface flows in the Ventura River did not become discontinuous until the last week of May - months later than would be expected after a such scant and curtailed winter rain season. Second, the dramatically reduced recharge caused an atypical drop in groundwater levels in the spring along the axis of the river. Both phenomena will have changed the location and degree to which groundwater - and any accompanying anthropogenically derived nitrate - upwelled in the sampled reaches.

The study appears to have omitted OWTS located within the City of Ojai

Figure 7 in the report (close up provided below), appears to indicate that OWTS within the City of Ojai were not considered in the study.

Close up from Figure 7 in the report. The faint red line is Ojai City limits

However, there are areas of OWTS within the City of Ojai – especially in the Arbolada neighborhood - which are not illustrated in the report maps. The areas including OWTS within the City of Ojai are located in the unsewered areas marked by orange fill in Figure 8 from OVSD's 2011 study of sources of N and P in the Ventura River Watershed (reproduced below).

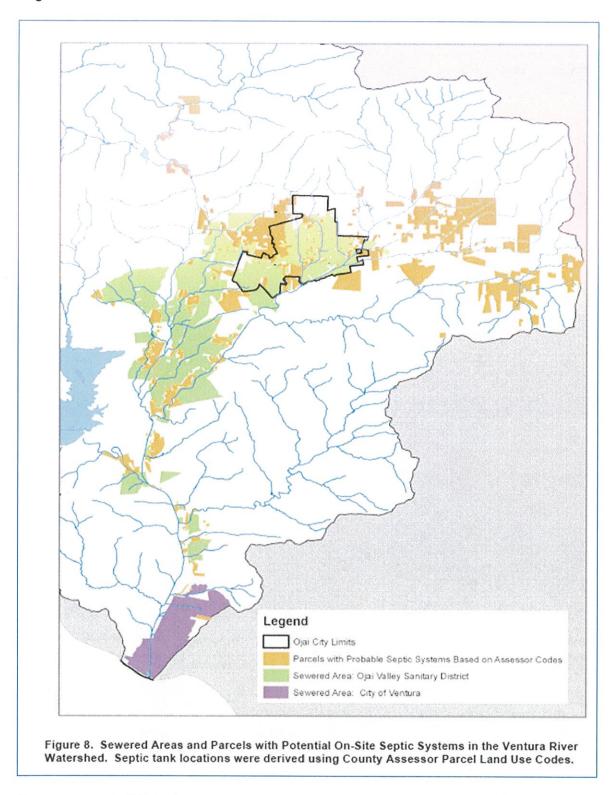
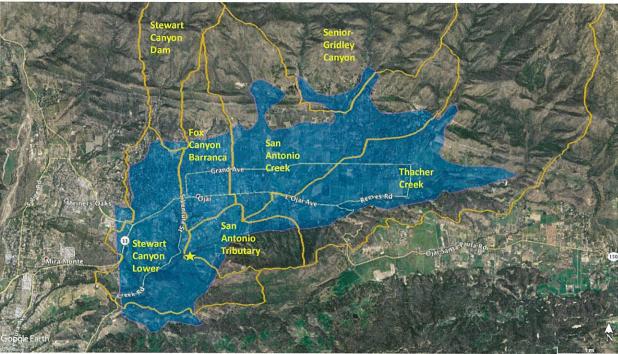


Figure excerpted from Larry Walker Associates (2011) Corrected Source Assessment Report: Nitrogen and Phosphorus in the Ventura River Watershed. Prepared for Ojai Valley Sanitary District, Aug. 9, 2011.

Direct OWTS discharges in groundwater basin recharge zones

The EHD study relies on an assumption that OWTS-related nitrate making its way into stream water primarily originates from leach fields in upland parcels adjacent to live stream reaches. This approach may be overly simplistic. The approach does not acknowledge the specific importance of (sometimes peripheral) groundwater basin recharge zones as entry points for anthropogenic nitrate, nor the potential for nitrate (and other mobile pollutants) to migrate underground between recharge zones and upwelling locations following pathways not captured by use of topographically determined zones of influence and/or not predicted by upstream surface water chemistry.

The study approach may have biased conclusions in the San Antonio Creek watershed to a greater extent than in the Ventura River reaches. The groundwater sampling wells in the Oiai Valley Basin were limited to the "E" location, close to where San Antonio Creek intersects with the boundary of the City of Ojai (see Figure 7 in the report). Relationships between OWTS density and well nitrate concentrations were not investigated in the eastern end of the Ojai Valley Basin, nor down-gradient from the unsewered Arbolada neighborhood straddling the western boundary of the City of Ojai¹, presumably because they were judged to be too far from an impaired stream reach. However, the more thorough historic groundwater data set illustrated in Figure 25 shows a widespread constellation of wells in the east end of the valley with nitrate-N levels >3 mg/L. In addition, given the paucity of nitrate data for groundwater underlying the City of Ojai (see Figure 25), it cannot be ruled out that long-term average nitrate concentrations > 3 mg/L may also be present in groundwater underlying the OWTS-rich neighborhoods within and bordering the City of Ojai (such as the Arbolada neighborhood). Inclusion of OWTS locations and well data from the east end of the valley and the unsewered areas in and near the City of Oiai may have revealed zones of influence with a longer radius than 2000 ft, which may also have changed the conclusions in Section 4.2.4 regarding whether OWTS in the City of Ojai were contributing to surface water impairments in San Antonio Creek in location D.


Many of the OWTS in the east end of the valley are probably situated over unconfined ground-water in the alluvial fan heads where Horn Canyon (Thatcher Creek), Gridley Canyon, Senior Canyon, and Reeves Creek enter the Ojai Valley basin. Stream channels traversing the basin that are tributary to San Antonio Creek are also important sources of recharge. These basin recharge areas are not captured by drawing a buffer zone around San Antonio Creek. If not reduced by anoxic conditions, nitrate from OWTS situated over unconfined alluvial fans or along tributary creeks may migrate to the basin boundary where San Antonio Creek traverses over the Arroyo Parida-Santa Ana Fault and groundwater rises and "spills" into San Antonio Creek (see yellow star in figure below). Perhaps not coincidentally, this "spill over" point is not far from the SW-04-U stream sampling site in the study where the second highest concentrations of nitrate-N and total N were reported for the VR watershed (both 2.65 mg/L). The potential for OWTS that are in basin recharge zones (but outside a San Antonio Creek buffer zone) to contribute nitrate to upwelling groundwater in the San Antonio Creek should be given more consideration.

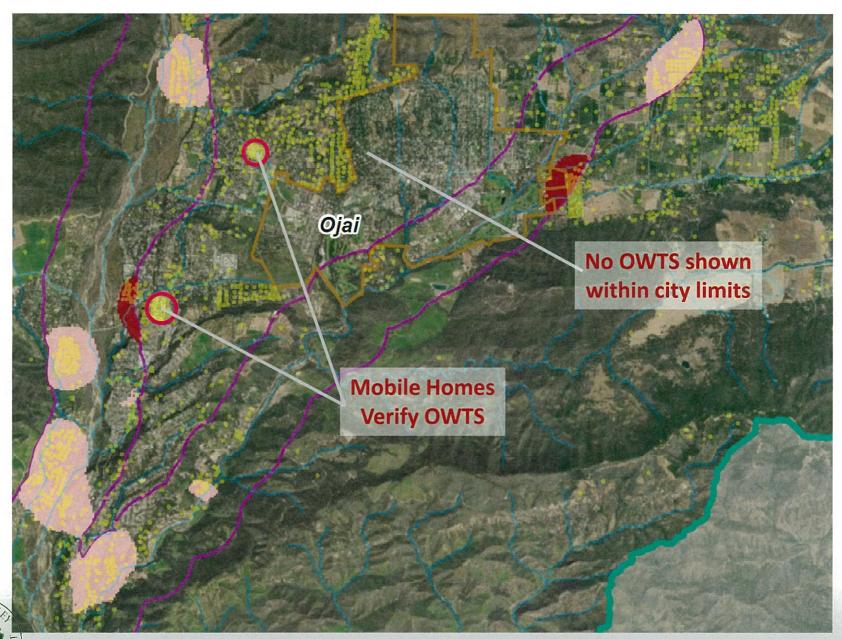
¹ Figure 25 in the report appears to indicate available nitrate data from at least one well located down-gradient from the Arbolada neighborhood.

Lack of consideration of translocated OWTS discharges during wet weather

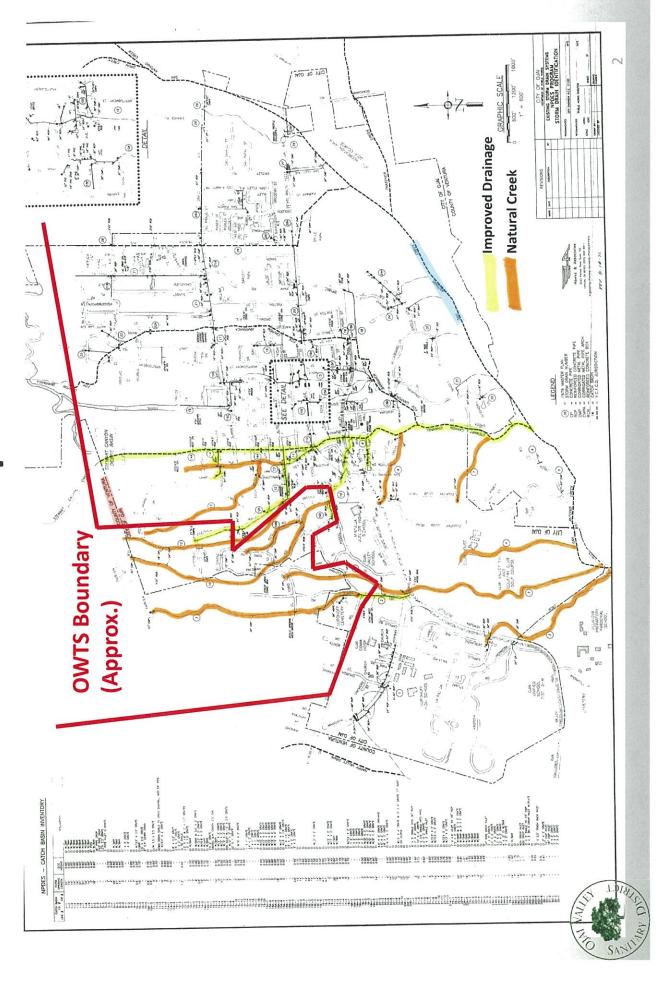
The figure below shows the sub-watersheds that drain to San Antonio Creek that also overlie the Ojai Valley groundwater basin. As stated already, many concentrated areas of OWTS within the San Antonio Creek watershed that drain to creeks were not evaluated in the study, including those within the boundaries of the City of Ojai in the Arbolada neighborhood which drains to Stewart Canyon Creek. Recharge of groundwater along stream beds is an important process both during wet weather and for variable periods of days to months after winter rains in both the Ventura River and San Antonio Creek drainages. It is reasonable to suspect that defective or poorly sited OWTS in urban locations in Ojai are discharging nitrate to surface runoff during wet weather. Unsewered, but urban, locations in Ojai that exhibit upwelling septage during wet weather are known to OVSD staff.

The role of wet weather is important in the context of OWTS risk assessment because during and after wet weather, nitrate from some OWTS may be mobilized in saturated conditions, enter stream water in seepage or overland flows, *migrate in surface waters considerably downstream from the leach fields where it originated,* and re-enter groundwater in recharge. With a temporal and spatial lag, the nitrate thus entering groundwater is potentially able to contribute to nitrate-laden upwelling occurring at some distance from its origin, later in the season when algae-related impairments are of greater concern and baseflow is supported primarily by groundwater inputs.

Juxtaposition of the Ojai Valley Groundwater Basin (blue polygon) and sub-watersheds draining to San Antonio Creek (orange boundaries). The yellow star indicates the location where the groundwater basin spills into San Antonio Creek owing to the Arroyo Parida-Santa Ana Fault. The groundwater basin boundary does not reflect the 2016 DWR basin boundary modification that excludes some of the area to the west and south of the spill-over point.


Over the past decade or so, there has been extensive water quality monitoring throughout the watershed. This data shows continuous and widespread high nitrate samples. The Study included some additional testing and in a limited way confirmed the previously collected data. To limit the conclusions and analysis to only the newly collected data appears to miss the historical nitrate perspective.

San Antonio Creek historically has most of and widespread high nitrate samples. Yet, the Study conclusions appear to focus nearly all higher risk areas in the Ventura River area. Since the entire septic property database for the City of Ojai is missing and considering the higher nitrate samples observed in the San Antonio Creek area, a more balanced set of conclusions appears to be appropriate.


Please contact me at (805) 646-5548 is you would like to discuss these issues.

Jeff Palmer

General Manager

Arbolada Area NPDES Map

3.2.11 - Lower Ventura River Basin

The Lower Ventura River Basin has few remaining active water wells available for sampling. Depth to the water bearing unit is 3 to 13 feet in the floodplain and deeper as the ground surface elevation increases towards the edge of the basin. The two wells sampled this year are located in river alluvium near the coast. Total dissolved solids and sulfate concentrations are above the MCL, otherwise, both have relatively good water quality. Water samples from both wells were analyzed for inorganic chemicals (Title 22 metals). No inorganic constituent was above the MCL. Figure 3-14 shows approximate well locations and concentrations of total dissolved solids (TDS), chloride (Cl⁻), nitrate (NO₃⁻), and sulfate (SO₄²⁻) for wells sampled in the Lower Ventura River basin.

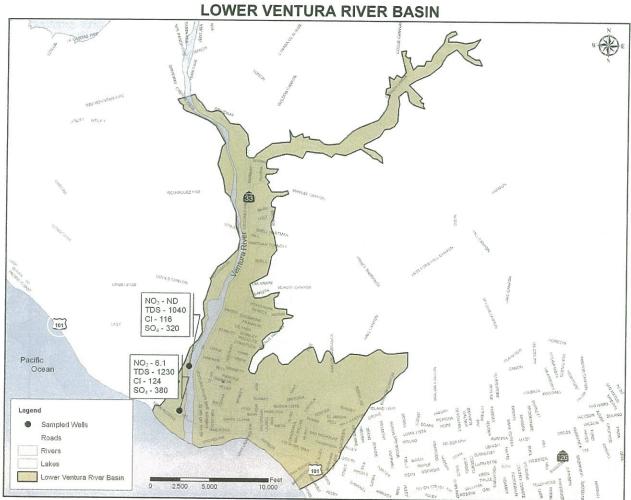
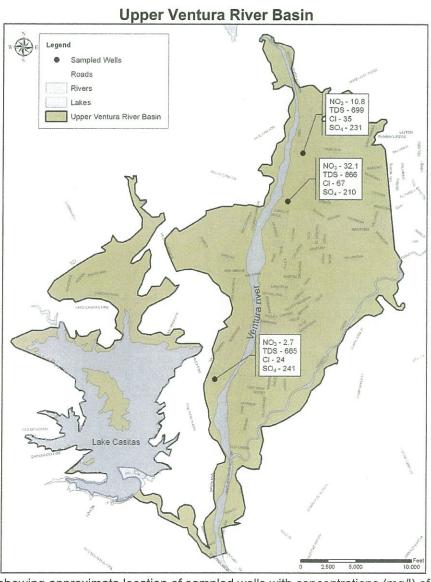
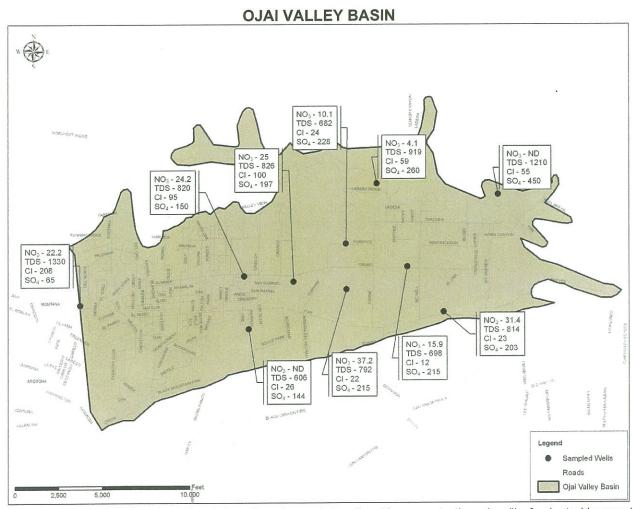



Figure 3-14: Map showing approximate location of sampled wells with concentrations (mg/l) of selected inorganic constituents.

3.2.20 - Upper Ventura River Basin

The Upper Ventura River Basin is mainly composed of thin alluvial deposits. The wells sampled are all less than 125 feet deep, and all have good water quality. The only constituent that exceeds the MCL for drinking water is TDS, a secondary MCL, with an average concentration of 750 mg/l. Groundwater from the three wells was also analyzed for inorganic chemicals and none of the constituents was above the MCL.


VCWPD is involved in the Matilija Dam Ecosystem Restoration Project, and as part of that project giant arundo is being removed along Matilija Creek above Matilija Dam using an herbicide called Glyphosate. Water from two wells downstream from the dam was tested for evidence of Glyphosate and results for both wells were non-detect. Figure 3-28 shows approximate well locations and concentrations of total dissolved solids (TDS), chloride (Cl⁻), nitrate (NO₃⁻), and sulfate (SO₄²⁻) for wells sampled in the Upper Ventura River basin.

<u>Figure 3-26</u>: Map showing approximate location of sampled wells with concentrations (mg/l) of selected inorganic constituents.

3.2.17 - Ojai Valley Basin

The Ojai Valley Basin water quality is considered good. Average TDS is 870 mg/l and ranges from 606 to 1300 mg/l. In the past, one well has consistently had an extremely high chloride concentration; two to three times the MCL. That is not the case this year. Further study is required to determine the reason for this sudden change. Water samples from six wells were analyzed for inorganic chemicals. No constituent was above the MCL. Depth to water bearing material is generally between 25 to 30 feet below ground surface. Figure 3-24 shows approximate well locations and concentrations of total dissolved solids (TDS), chloride (Cl $^{-}$), nitrate (NO $_{3}$ $^{-}$), and sulfate (SO $_{4}$ 2 $^{-}$) for wells sampled in the Ojai Valley basin.

<u>Figure 3-22</u>: Map showing approximate location of sampled wells with concentrations (mg/l) of selected inorganic constituents.

Regional Board Feedback: Technical Report for Study of Water Quality Impairments Attributable to OWTS in the Ventura River Watershed – Submitted September 2018

- 1. Please better describe the rationale for the 2000 foot buffer, including:
 - Can a sensitivity analysis be performed for the 2000 foot buffer designation?
 - What OWTS would be affected if the buffer was 3000 feet?
 - What if there was no buffer?
 - Are bedrock areas included in the buffer?
 - Please clarify in the technical report that data from bedrock was not used in calculating the 2000 foot buffer and discuss the uncertainty in applying the buffer in bedrock areas
 - Please clarify in the axis titles for Figure 21 whether nitrate is in groundwater or surface water.
 - In Figures 21 and 22, are site replicates averaged or shown as individual samples?
- 2. How much variability is there in the data from each sample site?
- 3. Have studies been conducted in other watersheds to define geographic parameters of OWTS influence? If so, how do the results of this study compare to those in other places?
- 4. Is the maximum extent of upwelling identified in Figure 4 based on samples collected for this study or historical samples as well? Did sample locations for this study coincide with the highest wetted upstream areas in the watershed?
- 5. If the surface water and ground water are not linked, is it possible the reaches are not upwelling?
- 6. The most recent annual report for the Ventura River Algae TMDL shows fluctuations in nitrate concentrations that include nutrient-related impairments in all reaches. Please consider in the analysis that all surface waters exceed the numeric target for nitrogen in the TMDL. How would this influence the conclusions in Table 18 and the risk rankings throughout the watershed?
- 7. Please explain the rationale for considering PPCP samples above the method detection limit (MDL) but below the detection limit for reporting (DLR) not to be present (Table 14). Please include in the report all samples above the MDL and discuss how the findings change if PPCPs are treated as present in these samples.
- 8. How does the presence of PPCPS found in this study compare with literature values from other watersheds?
- 9. Please provide supporting information for the analysis of Figure 18 discussed on page 39. There appear to be surface water samples from each group except group C that fall outside the range of ground water samples (contradicting analysis in paragraph). Isotopic ratios measured for surface water do not appear greater than those found in ground water for groups A and B (contradicting the included analysis).
- 10. What is the basis for considering 2.2 mg/L nitrate in groundwater to be low (page 48)?
- 11. Please provide the results of statistical analyses referenced in the statement: "The number of OWTS within a certain distance upgradient of each well was found to be significantly correlated with groundwater nitrate concentrations in alluvial areas." (page 49)
- 12. Please clarify how the upper bound of 143 OWTS was selected for medium density of OWTS (pages 52-53). How were boundaries determined for the area of OWTS influence in the OWTS density calculation (page 53)?
- 13. How much will changes in how the OWTS density is treated affect the priority area designations? At what OWTS density being considered critical would more areas be potential contributors to nutrient loading in the watershed? Can a sensitivity analysis be performed?
- 14. Please discuss which original sites from the monitoring plan were inaccessible and which backup sites were used?

15. Please provide the Regional Board with GIS layers that were compiled for this project.

The following questions are for discussion purposes and do not necessarily need clarification in the technical report:

- 16. Is Figure 6 intended to show the 600 foot buffer discussed in the previous paragraph?
- 17. Is laboratory and field contamination of samples a typical issue for caffeine? Are there additional precautions that can be taken in future studies? What is the likeliness of being able to collect and analyze clean caffeine samples in the future?
- 18. Could the determination that some sites may not be affected by OWTS, discussed on page 18 paragraph 2 and page 30 footnote b, been made during the site selection process?
- 19. How do the nitrate concentrations in groundwater within bedrock in this study compare with literature values for groundwater in bedrock?

The following changes are needed to the Technical Report:

- 303(d) listings on page 7 appear to be based on a previous 303(d) list. The following changes are needed:
 - Add to footnote: Ventura River Reach 1 Benthic Community Effects, Ventura River Reach 3 - Toxicity
 - Remove from footnote: Ventura River Reach 3 TDS, pumping, water diversion; Ventura River Reach 4 – water diversion and pumping
- Page 9, paragraph 1, Line 7 Typo "results" → "result"
- Page 12, Table 2 Charles Genkel is also a member of the TAC
- Page 62- Please remove the final two sentences of the report. These are policy recommendations that the Regional Board would prefer to evaluate with Ventura County outside of the Technical Report.

Appendix 3-3: Responses to Technical Report TAC and Regional Board Comments

Draft T	echnical Report (September 2018) Commen	ts and Responses from Geosyntec Consultants
Jeff Palmer, OVSD	The Study appears to have not included a large area of properties in the Arbolada area and did not include any septic served properties in the entire City of Ojai.	We used the most updated/accurate OWTS file available to us, and it was presented in the Study Plan. It is not possible to revise the study based on a different septic file at this point. The Arbolada area is distant from both our representative areas sampled and downgradient impaired surface waters, and the inclusion of OWTS in this area would therefore not impact the results of the study. The results from other areas investigated suggest that the distance of the Arbolada to San Antonio Creek make it a low risk of impacting surface waters through groundwater during dry weather. However, there may be local variations in subsurface flow that could results in a greater impact and further investigation would be needed to fully evaluate this area. Impacts in wet weather when OWTS may be more likely to fail and ephemeral streams flow from the Arbolada to San Antonio Creek could also results in greater impact.
Jeff Palmer, OVSD	There are extensive natural creeks and improved drainages in the Arbolada area that drain directly to San Antonio Creek and to the Stewart Canyon drain where historically high nitrate levels have been observed.	Available surface water quality data for dry weather was summarized in the report. Other than one location at the far upstream end of San Antonio Creek (which is downgradient of the Arbolada area) surface water concentrations were not obviously higher than that of other areas in the watershed. Surface water data from this study was also elevated at the upstream end of San Antonio Creek and study results suggested that this was likely due to OWTS closer to the creek in group E and upstream of this point. However, further investigation would be needed to fully evaluate the influence of upgradient OWTS in the Arbolada.

Jeff Palmer, OVSD		One well was sampled within Area G, close to the Arbolada which showed elevated nutrients. The nearest surface water sample was in Area D, well downstream of the Arbolada.	Yes, this well was upgradient of the City of Ojai, and downgradient of OWTS in bedrock geology. No groundwater was sampled between this location and San Antonio Creek and results from other areas of the watershed suggest that downgradient surface waters would not be impacted from this area due to the groundwater travel distance through alluvial geology. Analysis of hydrogeology and travel times and distances for groundwater from areas such as the Arbolada is outside the scope of this study, but is a major part of the current GW-SW modeling project being conducted for the State. Thus, this area can be further investigated through this complementary project.
Jeff Palmer, OVSD	4.4	Historical groundwater and surface water quality sampling by other groups and parties, dating back a decade or more do not appear to be included or referenced in great detail in the report. The Santa Barbara Channel Keeper Stream Team, UCSB and OVSD have compiled an extensive list of samples showing significant nutrient water quality issues.	Recent historical data from multiple sources were used in both the planning of this study and the interpretation of study results. Added two sentences to page 59 with the data sources rather than just referencing the monitoring plan. "As discussed in the Monitoring Plan, surface water data were obtained from the California Environmental Data Exchange Network (CEDEN), Santa Barbara Channel Keeper (SBCK), Ojai Valley Sanitation District (OVSD), and Ventura County Watershed Protection District (VCWPD). Groundwater data were obtained from VCWPD and Groundwater Ambient Monitoring and Assessment Program (GAMA)."
Jeff Palmer, OVSD		The Study does not appear to reference any known information from septic failures or pumping that would be contained in required reporting databases.	An investigation of OWTS failure and pumping was outside the scope of this project. While OWTS failure can certainly have an impact on surface waters, particularly during wet weather, this study was designed to evaluate the impact of OWTS throughout the watershed rather than just those with records of failure.
Jeff Palmer, OVSD		The Study conclusions do not appear to include any data from the Ventura County Watershed Protection District, Groundwater Section Annual Report for the groundwater quality. Known wells and sampling data indicate Nitrate tests between 2.7—37.2 in various well samples.	The majority of groundwater water quality data summarized in this study was from the VCWPD groundwater section. Average concentrations in wells from 2005 to 2017 are shown and were used in the planning and interpretation of this study.

Jeff Palmer, OVSD	4.4	59, 60	The Study conclusions based on the historical groundwater and surface water samples illustrated in Figures 25 & 26 appear to be inaccurate. Figures 25 & 26 indicate some of the highest nitrate samples downstream of City/County septic properties in the Arbolada, near the intersection of Stewart Canyon and San Antonio Creek. Yet this sample data was not discussed in the analysis	Samples were not collected downgradient of the Arbolada area. Therefore, an evaluation of OWTS impacts through multiple lines of evidence (nitrate, chemical indicators, isotopes) could not be performed. The risk map was developed based on data collected in this study, and historical groundwater quality data was used to support study conclusions.
Jeff Palmer, OVSD			The 600 foot and 2000-foot buffers along the impaired waterways show relatively very low concentrations of septic properties. Most of the septic properties are outside the buffer areas, yet the waterways are impaired. How can a relatively few properties in the buffer areas be connected to the impairment but the many properties located outside the buffer areas be listed as "low" probability of impacting the water quality?	Analysis of results from this study showed that distance and density were both important factors on the impact of OWTS on surface waters. Nitrate in groundwater is diluted and reduced through denitrification as it travels through the subsurface and into surface waters. Therefore, the OWTS that are closest to a stream will have the greatest impact. Further, as the TMDL's mass balance noted, OWTS contribute a relatively minor overall load to TN in the watershed. The GW-SW modeling study currently being conducted will allow for this finding to be reevaluated.
Jeff Palmer, OVSD			Historically, there is common knowledge of contaminated water and odors located in septic areas, flooded leach fields and septic backups into homes in wet years.	OWTS failures and the impact of OWTS on surface waters during wet weather were not evaluated in this study. However, the TMDL describes eutrophications as primarily a dry weather phenomenon in the watershed.
Jeff Palmer, OVSD			Poor graphic quality of maps . Maps should be provided as large format (e.g., tabloid size) high resolution images to allow for detailed inspection.	Higher quality images will be provided either within the main document or as an attachment.

Jeff Palmer, OVSD		meaning and are values assigned to the parameters that are used to determine attainment of the TMDL. The actual adopted Algae TMDL did not establish targets for any	You are correct, we've been misusing this term. The term used in the TMDL staff report is "allowable in-stream concentration". While this is not a regulatory target, it is the concentration for total nitrogen at which the algal biomass target is modeled to be met and is useful for comparison to our surface and groundwater quality concentrations in this study. This term will be revised throughout the report.
-------------------------	--	--	--

	Nitrate in stream water does not indicate degree of loading to the stream. Nitrate is reasonably conservative and highly mobile in soils below the root zone, provided an aerobic
Jeff Palmer, OVSD	conditions are not encountered. However, nitrate is highly non-conservative in surface waters. Use of nitrate concentrations in stream water is an inappropriate indicator of nitrate loading for this study, and thus the assessments of risk of OWTS loading based on down gradient stream water chemistry are highly compromised. Especially during the spring and summer months (when algae and aquatic macrophytes are most active), nitrate entering the streams from groundwater or surface runoff will be rapidly taken up into biomass. The unsuitability of nitrate as an indicator of nutrient loading is one of the reasons biomass-related targets were included in the TMDL instead of nutrient concentration targets. At the least, data for TN should have been used in stream water instead of nitrate. However, even TN is a poor indicator of loading to streams, as it also fails to account for nitrogen incorporated into the biomass of heterotrophic microbes or primary producers.

Jeff Palmer, OVSD		45-47	Assumptions about potential interference of OVSD sewer mains. Proximity to sanitary sewer lines, and the possibility of groundwater contamination from leaking sewer lines, was used in the report to qualify data from wells in Groups A, B, C, D, and E (see comments on p. 45-47). OVSD could have been contacted directly to provide specifics about the likelihood of sanitary sewer or private lateral leaks in the vicinity of wells used in this study. OVSD's program for addressing inflow and infiltration (III) started with development of its Sanitary Sewer Maintenance Program (SSMP) and includes an aggressive program of sanitary sewer line inspections and testing. Since the certification of the SSMP in July 2009, OVSD has developed a comprehensive III reduction program. The III reduction program has almost halved peak influent flows during rain events. OVSD continues to monitor "Enhanced Maintenance Areas (Hot Spots)" and known High Ground Water areas and utilizes targeted flow metering. In addition, in 2014, OVSD completed a pilot project to repair 33 deficient private sewer laterals, which successfully reduced III from these laterals. Therefore, on September 28, 2015, OVSD adopted Ordinance No. OVSD-78 which established Guidelines for Private Sewer Laterals (PSL) to reduce potential discharges and protect the environment. Since 2014, a total of 870 PSL pipelines have been inspected and 373 deficient PSL pipelines have been repaired.	We understand OVSD has put tremendous effort into maintenance of sanitary sewers and it's I&I and IDDE programs. However, we felt it was necessary to acknowledge where sanitary sewers were near our wells. The analysis suggests that OWTS are impacting groundwater nitrate concentrations and no analysis of impacts due to sewers was performed. Furthermore, the TMDL does not establish load reduction requirements for sewers, so there's no concern being raised here about contamination from sewer leaks being significant relative to the many other nutrient sources that are being regulated across this watershed.
Jeff Palmer, OVSD	4.2.8		Effect of prolonged drought: The collection of the groundwater and surface water data used to derive the 2000 ft radius of influence occurred during the 6th year of an exceptional drought. Conclusions regarding the distance between wells and culprit OWTS may have been very different if the data sets were obtained when water tables were higher and the hydraulic connection between leach fields and well capture zones was more pronounced.	This is a good point, the analysis performed in this study is valid for the period of study and results may be different if conditions were very different in the watershed (e.g., after years with above average rainfall). This will be acknowledged in the uncertainties section.

Jeff Palmer, OVSD

Jeff Palmer, 4.2 OVSD	River reaches. The groundwater sampling wells in the Ojai Valley Basin were limited to the "E" location, close to where San Antonio Creek intersects with the boundary of the City of Ojai (see Figure 7 in the report). Relationships between OWTS density and well nitrate concentrations were not investigated in the eastern end of the Ojai Valley Basin, nor down-gradient from the unsewered Arbolada neighborhood straddling the western boundary of the City of Ojai1, presumably because they were judged to be too far from an impaired stream reach. However, the more thorough historic groundwater data set illustrated in Figure 25 shows a widespread constellation of wells in the east end of the valley	Groundwater data collected in this study supports the assumption/hypothesis that OWTS closer to streams are likely to have a greater impact on those streams. A full hydrogeological analysis of groundwater flow (including recharge zones and upswelling areas) and interaction with surface water was outside the scope of this study, but is currently being conducted as part of the State funded modeling study. For this reason, one of our final recommendations if for the OWTS impacts to be further refined based on the results of the modeling study, which would allow for nutrient transport from areas such as the Arbolada to be investigated.
-----------------------------	--	---

wet weather. The figure below shows the sub-watersheds that drain to San Antonio Creek that also overlie the Ojai Valley groundwater basin. As stated already, many concentrated areas of OWTS within the San Antonio Creek watershed that drain to creeks were not evaluated in the study, including those within the boundaries of the City of Ojai in the Arbolada neighborhood which drains to Stewart Canyon Creek. Recharge of groundwater along stream beds is an important process both during wet weather and for variable periods of days to months after winter rains in both the Ventura River and San Antonio Creek drainages. It is reasonable to suspect that defective or poorly sited OWTS in urban locations in Ojai are discharging nitrate to surface runoff during wet weather. Unsewered, but urban, locations in Ojai that exhibit upwelling septage during wet weather are known to OVSD An investigation of wet weather impacts on in-stream (and staff. The role of wet weather is important in the context of OWTS groundwater) nitrate impacts from OWTS was outside the scope of this risk assessment because during and after wet weather, nitrate from some OWTS may be mobilized in saturated conditions, enter study. The transport pathways for nitrate from OWTS are very different Jeff stream water in seepage or overland flows, migrate in surface in wet weather compared to dry weather and therefore an investigation Palmer, waters considerably downstream from the leach fields where it of wet weather impacts would be a valuable follow-up to this study. originated~ and re-enter groundwater in recharge. With a **OVSD** This lack of knowledge on wet weather impacts and their potential temporal and spatial lag, the nitrate thus entering groundwater is potentially able to contribute to nitrate laden upwelling occurring impact during dry weather periods will be acknowledged in the at some distance from its origin, later in the season when algaeuncertainties section. related impairments are of greater concern and baseflow is supported primarily by groundwater Over the past decade or so, there has been extensive water quality monitoring throughout the watershed. This data shows continuous and widespread high nitrate samples. The Study included some additional testing and in a limited way confirmed the previously collected data. To limit the conclusions and analysis to only the newly collected data appears to miss the historical nitrate perspective. San Antonio Creek historically has most of and widespread high nitrate samples. Yet, the Study conclusions appear to focus nearly all higher risk areas in the Ventura River area. Since the entire septic property database for the City of Ojai is missing and considering the higher nitrate samples observed in

Antonio Creek area, a more halanced set of conclu

Regional Board	4.2.8	Please better describe the rationale for the 2000 foot buffer, including: 1.Can a sensitivity analysis be performed for the 2000 foot buffer designation? 2.What OWTS would be affected if the buffer was 3000 feet? 3.What if there was no buffer? 4.Are bedrock areas included in the buffer? 5.Please clarify in the technical report that data from bedrock was not used in calculating the 2000 foot buffer and discuss the uncertainty in applying the buffer in bedrock areas 6.Please clarify in the axis titles for Figure 21 whether nitrate is in groundwater or surface water. 7.In Figures 21 and 22, are site replicates averaged or shown as individual samples?	 4. There are some bedrock areas within the 2,000 foot buffer, but the OWTS density is low in these areas. Added clarification at the end of the 2nd sentence in section 4.2.8:"To further examine this observation, nitrate concentrations were plotted against upgradient OWTS density for samples collected at sites in alluvium or bedrock/shallow alluvium." 5. This is stated in section 4.2.8 and discussion will be added in the uncertainties section. 6. Added "Groundwater" to the axis title 7. Individual samples. Added clarification ("for each sample") in-text for Figure 21 (page 51) and in the figure caption for Figure 22 (page 52)
Regional Board	3	How much variability is there in the data from each sample site?	The event to event variability in GW nitrate concentrations can be seen in Figure 22. Each well has a constant number of upgradient parcels with OWTS and the vertical spread in results at that number is the event to event variability. Averaging of results across events improves the correlation. Full results are in Appendix A.

Regional Board		Have studies been conducted in other watersheds to define geographic parameters of OWTS influence? If so, how do the results of this study compare to those in other places?	It is our understanding that this is a first of its kind study in terms of the use of nutrient source tracking tools to evaluate surface water OWTS impacts. Correlations have been observed in other studies between OWTS and bacteria and nutrient concentrations in surface waters. A full literature review of OWTS studies conducted in other watersheds is outside the scope and remaining budget of this project.
Regional Board	6	Is the maximum extent of upwelling identified in Figure 4 based on samples collected for this study or historical samples as well? Did sample locations for this study coincide with the highest wetted upstream areas in the watershed?	It was based on both, samples from this study as well as historical samples. Surface water sample locations corresponded with just upstream and downstream of groundwater sampling locations (which were mainly determined by areas of high OWTS density), assuming those surface water locations were flowing. Flowing areas in both the Ventura River and San Antonio Creek vary throughout the year and from year to year, but the most upstream sampling locations on both streams were close to the furthest upstream areas with connected flow in April and May 2018. These locations were dry in the August/September 2017 sampling event.
Regional Board		If the surface water and ground water are not linked, is it possible the reaches are not upwelling?	Yes, some reaches identified as potentially upwelling due to the presence of surface flow could actually be downwelling and not linked to GW. It is expected that there are multiple upwelling and downwelling areas along these streams and that these areas change from year to year based on GW levels. Therefore, the conservative assumption is that where flow is observed there is the potential for this to be an upwelling area. This is one area the GW-SW interaction model will help better determine these areas spatially and how they are linked to GW.

Regional Board	4.2.7	49	The most recent annual report for the Ventura River Algae TMDL shows fluctuations in nitrate concentrations that include nutrient-related impairments in all reaches. Please consider in the analysis that all surface waters exceed the numeric target for nitrogen in the TMDL. How would this influence the conclusions in Table 18 and the risk rankings throughout the watershed?	We did not have this data at the time the technical report was written. However, if all surface waters are considered to be elevated for nitrogen (or above targets for algal biomass due to nitrogen loading), then all the "potential risk" areas identified in Figure 24 would change to "high risk".
Regional Board		35	Please explain the rationale for considering PPCP samples above the method detection limit (MDL) but below the detection limit for reporting (DLR) not to be present (Table 14). Please include in the report all samples above the MDL and discuss how the findings change if PPCPs are treated as present in these samples.	The reporting limit was selected as the cutoff because this is the level the lab uses to identify contamination in its internal controls and the level we used in our QAQC of field samples. Most PPCPs had detections in lab and field blanks below the reporting limit and therefore concentrations in samples at that level do not indicate the presence of that analyte. To be used as a line of evidence for OWTS impact, we wanted to be certain that the concentration seen in GW was not due to background or contamination. Including below reporting limit detections in the analysis would result in many more PPCP detections, but would not change the final result because it was determined that all representative areas were impacted by PPCPs to some degree and that this was a line of evidence supporting OWTS impacts in GW.
Regional Board			How does the presence of PPCPS found in this study compare with literature values from other watersheds?	PPCPs including those analyzed in this study have been found at higher levels in GW in urban areas. However, analysis of PPCPs in watersheds where OWTS are the primary source is much more limited. A full literature review of PPCP concentrations measured in groundwater and surface water in other unsewered and/or sewered watersheds is outside the scope of this project.

Regional Board	39	Please provide supporting information for the analysis of Figure 18 discussed on page 39. There appear to be surface water samples from each group except group C that fall outside the range of ground water samples (contradicting analysis in paragraph). Isotopic ratios measured for surface water do not appear greater than those found in ground water for groups A and B (contradicting the included analysis).	Sentence stating that "surface water isotopic compositions fall within the range of isotopic compositions of the associated groundwater group, with the exception of group A" removed. Replaced with text stating that all surface water ratios fall within the expected range for nitrate from OWTS. The next sentence notes that groups A and B have lower ratios in surface water than GW, potentially signifying the influence of other sources.	
Regional Board	48	What is the basis for considering 2.2 mg/L nitrate in groundwater to be low (page 48)?	"relatively low" removed from this sentence.	
Regional Board	49	Please provide the results of statistical analyses referenced in the statement: "The number of OWTS within a certain distance upgradient of each well was found to be significantly correlated with groundwater nitrate concentrations in alluvial areas." (page 49)	Added statistical results in parentheses, "(r = 0.8167, p < 0.00001)" on page 49	
Regional Board	52-53	Please clarify how the upper bound of 143 OWTS was selected for medium density of OWTS (pages 52-53). How were boundaries determined for the area of OWTS influence in the OWTS density calculation (page 53)?	It corresponded to a nitrate concentration of 5 mg/L (based on the correlation between number of upgradient OWTS and observed nitrate levels in groundwater from the study). The 5 mg/L was somewhat arbitrary, but helped to demonstrate the difference in nitrate concentration by density shown in Figure 23. No risk determinations were made based on the difference between medium and high OWTS density.	

Regional Board			How much will changes in how the OWTS density is treated affect the priority area designations? At what OWTS density being considered critical would more areas be potential contributors to nutrient loading in the watershed? Can a sensitivity analysis be performed?	The critical OWTS density of 0.2/acre was determined by the correlation with nitrate in groundwater at a concentration of 1.15 mg/L (the allowable in-stream concentration for TN in the TMDL staff report). Any change to this density or the concentration used to determine the density would result in a change in the OWTS that are included in the at risk areas. Recreating the risk map for different densities (or different buffer areas) is not difficult but requires time to conduct analysis and create the map that is outside the scope and remaining budget in this project.
Regional Board	Please discuss which original sites from the monitoring plan were inaccessible and which back-up sites were used?		monitoring plan were inaccessible and which	Added the following footnotes for inaccessible and added sites respectively: "This includes GW-B-01, GW-B-02, GW-C-01, GW-C-02, GW-C-03, GW-D-01, GW-D-02, GW-D-03, GW-E-01, GW-F-01, GW-G-03, GW-A-BK-05, and GW-B-BK-04." "Specifically, GW-A-07, GW-B-04, GW-B-05, GW-C-07, GW-C-08, GW-D-04, GW-D-05, GW-D-07, GW-F-02, and GW-C-BK-06".
Regional Board			Please provide the Regional Board with GIS layers that were compiled for this project	GIS files will be provide with the finalized technical report.
Regional Board		(just for discussion) Is Figure 6 intended to show the 600 foot buffer discussed in the previous paragraph?		Yes, the 600 foot buffer is shown in Figure 6.
Regional Board			(just for discussion) Is laboratory and field contamination of samples a typical issue for caffeine? Are there additional precautions that can be taken in future studies? What is the likeliness of being able to collect and analyze clean caffeine samples in the future?	Yes, we have had contamination issues with caffeine on other projects as well. Additional field precautions would not help because the issue is also seen in laboratory blanks. I've been in contact with Weck Labs to discuss this, but no solution has yet been found (detection in blanks seems sporadic) and the use of this analyte is therefore limited at this point (at least using this method at this lab).
Regional Board		18, 30	(just for discussion) Could the determination that some sites may not be affected by OWTS, discussed on page 18 paragraph 2 and page 30 footnote b, been made during the site selection process?	If review of well boring logs was performed prior to site selection, this determination could have been made then. However, boring log review was not included in our scope, the logs were obtained through the modeling study, and data from these wells turned out to be valuable (e.g., showed some impacted groundwater even when there were some semi-confining layers present).

Regional Board			(just for discussion) How do the nitrate concentrations in groundwater within bedrock in this study compare with literature values for groundwater in bedrock?	Groundwater nitrate concentrations vary by watershed, but elevated levels have been observed in bedrock in other areas. A literature review of bedrock groundwater concentrations is outside the scope of this study.
Regional Board		7	303(d) listings on page 7 appear to be based on a previous 303(d) list. The following changes are needed: oAdd to footnote: Ventura River Reach 1 – Benthic Community Effects, Ventura River Reach 3 - Toxicity oRemove from footnote: Ventura River Reach 3 – TDS, pumping, water diversion; Ventura River Reach 4 – water diversion and pumping	Updated the footnote on page 7
Regional Board		9	Page 9, paragraph 1, Line 7 - Typo "results" → "result"	Fixed the typo on page 9
Regional Board		12	Page 12, Table 2 - Charles Genkel is also a member of the TAC	Added Charles Genkel to Table 2
Regional Board		62	Please remove the final two sentences of the report. These are policy recommendations that the Regional Board would prefer to evaluate with Ventura County outside of the Technical Report.	Removed final two sentences on page 62
Rebecca Lustig, EHD	3.3?		Provide simplified statement/paragraph clarifying how the nitrate isotope ratios and PPCPs relate to the levels of total nitrogen, nitrate, nitrite. (Jared, we briefly talked about this on the phone a couple weeks ago)	PPCPs and nitrate isotope ratios were used as supporting lines of evidence that groundwater was impacted by OWTS. Any PPCP results above the laboratory reporting limit was considered evidence of OWTS impacts. Similarly, nitrate isotope ratios within the published range for sewage were considered to be an indication of OWTS impacts.
Rebecca Lustig, EHD		9	Page 9, paragraph 2: replace the word "septic tanks" with "septic systems"	Replaced tanks with systems

Rebecca Lustig, EHD	29	Page 29, Table 9: bottle size for nitrate-N, nitrite-N, total N, and ammonia-N was 500-mL (Aug and Sept) and 1000-mL (April and May), not 250-mL	Updated bottle sizes in Table 9	
Rebecca Lustig, EHD	43	Page 43, paragraph 1: replace "levels is groundwater" with "levels in groundwater"	Fixed the typo on page 43	
Rebecca Lustig, EHD	48	Page 48, section 4.2.6: recommend discussing Groups F and G separately to be consistent with how the other Groups were presented.	Groups F and G will be divided into two sections	
Rebecca Lustig, EHD	62	Page 62, paragraph 3:Remove the following statement: "In addition to the refinement of the analysis and risk map, it is also recommended that the County allow individual OWTS owners a path to demonstrate that they are not significantly contributing nitrogen to surface waters. This could be done through surface and/or groundwater sampling downgradient of the owner's leach field and may require consultation with a hydrologist to determine local groundwater flow characteristics."	Removed final two sentences on page 62	

Final Technical Report (November 2018) Regional Board Comments and Responses

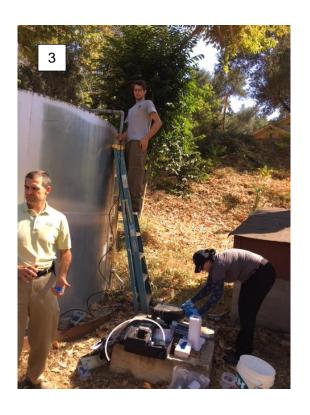
Document	Comment	Response
Tech	What does the flag "BC" represent in Table A-6?	Blank Contamination
Report		
Tech	What does "low nitrate" mean in Tables A-7, A-8, and	This term was how Source Molecular reported the value for
Report	A-9?	these results. It was below their established reporting limit.
-	·	Addressed in final report section 3.2.5
OVSD letter	Technical Report or Draft Report.	Address die Deservicte Dies and eventer of LAMD
Tech Report - OVSD letter	Failing OWTS are referenced in multiple OVSD comments. Is there a current mechanism for addressing? Can this be referenced in the Prescriptive Plan?	Addressed in Prescriptive Plan and overview of LAMP.
Tech Report - OVSD letter	Are there outstanding concerns from OVSD regarding this question?	As stated by Geosyntec, VC WPD data was utilized while developing the study. Staff from VC WPD were part of TAC.
Tech Report -	Please acknowledge the late receipt of information in	Addressed in final report section 3.2.5
OVSD letter	the technical report so that those utilizing the report in the future will be aware of the data gap. Note the lack of OWTS identified in the City of Ojai/Arbolada and the need to confirm whether or not areas identified as mobile homes by OVSD indeed have OWTS as well as any additional information not incorporated in the map.	
Tech Report - OVSD letter	Please enlarge box to make full text visible.	Discussed with Regional Board staff on 12/26/2018.
Tech Report - OVSD letter	Would any of the City of Ojai/Arbolada OWTS fall in potentially or likely impacted areas?	Yes, the high-risk area near Group E overlaps the city limits.
Tech	The Technical Report would be much stronger if	Discussed with Regional Board staff on 12/26/2018.
Report -	information was included regarding the sensitivity of	Ŭ
RB Comment	the risk recommendations provided in the report.	
Tech	The response to this question raises a concern that	Geosyntec responded with their rationale for using averages.
Report -	the points plotted in Figure 22 do not represent	EHD cannot speak to the appropriateness of using averages
RB Comment	independent samples as all samples with the same x-value are from the same site. The line and accompanying formula may not be appropriately representative of the data.	instead of individual results, or if individual results would significantly change the conclusions. Brief discussion added in final report section 3.3.3

	surface water impairment than identified in this study. The discrepancy between waters identified as impaired in this study and those identified by the Regional Board is likely due to the use of averages in this study.	Addressed in section final report 3.3.3
Tech	Responses address ground water. Surface water	Discussed with Regional Board staff on 12/26/2018.
Report -	response not provided.	
RB Comment		
Tech	Consider acknowledging the following comment from	Including this comment was discussed. EHD does not want
Report -	OVSD in the final project report: "We believe, and	to include this statement because we do not agree with this
RB Comment	data shows, that septic systems contribute to	statement as it is written, namely that "data shows septic
	groundwater and surface water quality impairments to	systems contribute to surface water impairments to a greater
	a greater degree than concluded in the Study."	degree". Historical data does not definitively point to
		OWTS as the source of nitrate impairments. Section 3.2.5
		and section 4.1 of the final report, and the Prescriptive Plan
		include statements which acknowledge data gaps.

Appendix 4: Field Sampling Photographs

1. Sampling location GW-C-07

Obtained water sample and parameters from sample port.


 Photo taken by Rebecca Lustig, Ventura County Environmental Health Division)

2. Sampling location GW-G-02

Attached flow cell to closest water valve to take sample and parameters.

Photo taken by Rebecca Lustig,
 Ventura County Environmental
 Health Division

3. Sampling location GW-F-02

Obtained water sample and parameters from fill pipe at top of storage tank adjacent to the water well.

 Photo taken by Diane Wahl, Ventura County Environmental Health Division

4. Sampling location GW-C-BK-05

Well did not have a dedicated pump.
Pump with tubing was lowered into well head to obtain water sample and parameters.

 Photo taken by Diane Wahl, Ventura County Environmental Health Division

5. Sampling location SW-03-D

Surface water sample taken from section of Ventura River within Foster Park which flows year-round.

Photo taken by Rebecca Lustig,
 Ventura County Environmental
 Health Division

6. and 7. Sampling location SW-04-D

Surface water sample taken from San Antonio Creek. Creek was dry during the August 2017 and September 2017 sampling events (6), and flowing during the April 2018 and May 2018 sampling events (7).

 Photo taken by Rebecca Lustig, Ventura County Environmental Health Division

Appendix 5: CEQA Documentation

Notice of Exemption (NOE) for Grant Projects State Water Resource Control Board Concurrence

Agi	reement N	lumber:	D1513402		Date NOE Filed:	9-29-2016 (County); 10-3-2018 (OPR)
	ntee:			mental Health Division	County:	Ventura
Lea	d Agency	: Ventu	ra County Envi	onmental Health Division	State Clearinghou	rse #: 2018108068
Proje	ect Location	on (attach r ption: Cond	nap, if applicab luct field sampl	ems in the Ventura River Wat le): ing for a Total Maximum Dail areas that are contributing s	y Load (TMDL) Specia	
	y is to cre its tributa		or septic system	areas that are contributing s	substantive nutrient i	oads to the ventura River
CEO	A Catago	rical/State	utom Evomet	ons: Check all exemptions	the musical meater	
			s 1 Existing	Operation, repair, maintenar structure		
	Section 1 Reconstr		s 2 Replacemer	Replacement or reconstruction replacement structure is local		re where the new or
		.5303: Class n or Conver	s 3 New sion of Small	Construction or remodification structures	on of a limited number o	f new or existing small
Alt	Section 1 teration to			Minor alteration to the condinegative impact to existing s	cenic trees	
Co	llection		6 Information	Basic data collection and res resource	earch with no disturban	ce to an environmental
	Section 1 anning Stu	.5262: Feas udies	ibility and	A project involving only feasi	bility or planning studie	S
	Section 1	5269: Eme	rgency Projects	A project that is deemed an	emergency as described	I in Section 15269
Ha		5333: Class toration Pro		Project is five acres or less a wildlife	nd ensures a positive in	pact for fish, plants or
	Other			Provide Section number and	description:	
cept	tions to N			indicating whether statem	ent applies. If you	mark "yes" then the No
		do	es not apply	- call your GM		
Yes	No					
	^ 3,	4,6)		l in a particularly sensitive enviror		
				or have there been successive pro entally significant?	ojects of the same type	in the same place, and
	_x Sig	gnificant Effe		asonable possibility that the proje	ect will have a significan	t effect on the
		enic Highwa ate scenic hig		ject cause damage to the environ	ment within a highway	officially designated as a
	x Ha	zardous Was		roject located on a site which is i	ncluded on any list com	piled pursuant to Section
	y His			project cause a substantial adve	rse change in the signifi	cance of a historical
				the information in this for icant effect on the environ		ne project is exempt fro
rante				Grant Manager Concurrence:	State Wa	ater Board Concurrence:
	William S	tratton		Print: 5. Rapoport	Print: /	estre Landon
ignat	ure:	\$1	8	Signature: D. Karon J.	Signatur	e: Felux Faudr-
ate:	m/4	2014	7	Date:	Date:	11/11/19

2018108068

Notice of Exemption	EU I S	Appendix E
To: Office of Planning and Research P.O. Box 3044, Room 113 Sacramento, CA 95812-3044	From: (Public Agency): Ventura Co Environmental Health Division 800 S. Victoria Ave. Ventura, CA 9	ingen in an annual ann an aireann aige an aireann aireann an ann an an an an an an an an an an
County Clerk	The state of the s	······································
County of: Ventura 800 S. Victoria Ave. Ventura, CA 93009	(Address)	FILED DATE: SEP 29 2016 MARK A LUNN Ventura County Clerk and Recorder
Project Title: TMDL Study for Septic System	ns in the Ventura River Watershed	By LAURA BROWN Deputy
Project Applicant: Ventura County Environm	nental Health Division (VC EHD)	
Project Location - Specific: Ventura River and its Tributaries, Ventura Coun		
Project Location - City: Ojai/Oakview	Project Location - County: Ve	ntura
Description of Nature, Purpose and Beneficiari Conduct field sampling for a Total Maximum D that are contributing substantive nutrient load EHD in developing a Prescriptive Plan to reduce Name of Public Agency Approving Project: Vel Name of Person or Agency Carrying Out Project	ally Load (TMDL) Special Study to compil s to the Ventura River and its tributaries. e nutrient pollution attributable to septic	Results will assist the VC systems in the area.
Name of Person or Agency Carrying Out Proje	ect: Ventura County Environmental Hea	alth Division
Exempt Status: (check one): Ministerial (Sec. 21080(b)(1); 15268); Declared Emergency (Sec. 21080(b)(4); Emergency Project (Sec. 21080(b)(4); Categorical Exemption. State type and Statutory Exemptions. State code num	3); 15269(a));	Information Collection
Reasons why project is exempt: TMDL Special Study is exempt pursuant to CEQ study will involve only data collection activitie of this study may result in further action by the possible action(s) have not been approved, add	A Guidelines Section 15306 Information es which will not result in an environmen Ventura County Environmental Health I	Collection because this tal impact. The results
Lead Agency Contact Person: William Stratton	Area Code/Telephone/Extensi	on; (805)654-2813
If filed by applicant; 1. Attach certified document of exemption 2. Has a Notice of Exemption been filed by		cir. 0 Yes 0 No Refer, Enc Hackton Div

☐ Signed by Lead Agency ☐ Signed by Applicant

Authority cited: Sections 21083 and 21110, Public Resources Code.

Reference: Sections 21108, 21152, and 21152.1, Public Resources Code.

Date Received for Illing at OPR:

SEP 29 2019 STED	mor's Office of Planning & Resea	rch
MARK A LUNN Venture County Clerk and Recorder	OCT 03 2018	Revised 2011
	ATE CLEARINGHOUS	

CALIFORNIA DEPARTMENT OF FISH AND WILDLIFE 2016 ENVIRONMENTAL FILING FEE CASH RECEIPT

Complete the information and submit with each set of documents presented for filing. Please provide an original set and (3) three sets of copies for filing.

Ventura County Clerk and Recorder MARK A. LUNN 09/29/2016 03:46:41 PM 1115861 \$50.00 BR

Project Title: TMDL study for Septic Systems in the Ventura River Watershed
Name of Agency filing attached document: Ventura County Environmental Health Division (VC EHD)
The above named agency is filing as: • Lead Agency
Address of Filing Agency: 800 S. Victoria Ave. Ventura, CA 93009-1730
Document Type (check one): OEnvironmental Impact Report ONegative Declaration
Mitigated Neg. Declaration
Project Applicant: Ventura County Environmental Health Division Project Applicant Address: 800 S. Victoria Ave. Ventura, CA 93009-1730
Project Applicant Phone Number: (805) 654-2813
Project Applicant is (check one): OLocal Public Agency OSchool District OOther Special District OState Agency OPrivate Entity
If the agency presenting this document is filing as the responsible agency, provide a copy of the Lead Agency's filed documents and complete the following:
Lead Agency:
Lead Agency's Project Title:
Lead Agency's State Receipt #:
Lead Agency's Document #:
Check Applicable Fees (check all that apply):
ONegative Declaration (\$2,210.25) OCategorically Exempt
OEnvironmental Impact Report (\$3,070.00) OStatutorily Exempt
Ocounty Administrative Fee (\$50.00) Ono Effect Determination Form
OFiled by responsible agency; fees paid by lead agency (Attach a copy of Lead Agency's filing & receipt).
OFees have already been paid (Attach a copy of the prior filing and proof of payment).
Prepared by: William Stratton VC EHD Director
Print Name Print Title
Signature/14/12/16 651-28/8
Date Phone #
DO NOT WRITE BELOW THIS LINE The following will be completed by the Ventura County Clerk's Office.
Signature of person receiving nayment: LAURA BROWN Total Received: \$
Signature of person receiving payment: LAUKA BROWN Total Received: \$ Total Received: \$ Total Received: \$
Posted: SEP 29 2016 through

Appendix 6: Advisory Notice for Septic Systems in the Siete Robles Tract

Ventura County Environmental Health Division 800 S. Victoria Ave., Ventura CA 93009-1730 TELEPHONE: 805/654-2813 or FAX: 805/654-2480 Internet Web Site Address: www.ventura.org/envhealth

ADVISORY NOTICE SEPTIC SYSTEMS IN THE SIETE ROBLES TRACT

The Siete Robles tract is located in the Ojai Valley, East of the City of Ojai and South of Ojai Avenue (Highway 150). If your residence is located on Avenida de la Entrada, Avenida de la Vereda, Avenida de la Cruzada, Avenida del Recreo, or Camino Arroyo, you may be affected by the information appearing in this advisory.

Elevated groundwater conditions have reduced the ability of soil to receive and treat the sewage discharges from many of the septic systems in the Siete Robles tract. The inability of the soil to adequately receive and treat sewage can result in insanitary conditions leading to foul odors and potential human health risk. In some cases, existing septic systems in this tract do not meet current Ventura County Building Code (VCBC) and Los Angeles Regional Water Quality Control Board minimum requirements for separation of septic systems from underlying groundwater.

As provided for in the VCBC, Appendix Chapter K, Section K-1(f), new or additional discharges of sewage to the soil in this tract will not be allowed, unless engineering data and test reports satisfactory to the Environmental Health Division have been submitted and approved. Existing discharges to septic systems in this tract are not affected by this notice.

FREQUENTLY ASKED QUESTIONS

1. My septic system is working properly, and I am not planning any changes to my home. Am I affected by this notice?

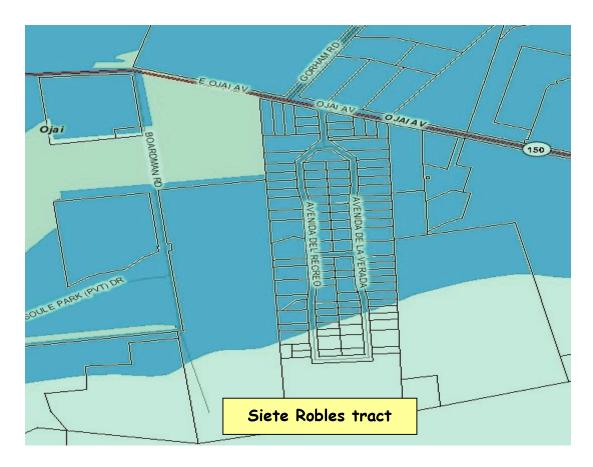
No; residents may continue to use their existing septic systems.

2. My septic system is not working properly; can I obtain a septic system repair permit?

Yes, however, no increase in discharge or system capacity beyond what currently exists will be allowed.

3. My home was damaged in the flooding event of 2005. Can I rebuild my home and continue to use my existing septic system?

Yes, as long as the system complies with the following:


- the system is not in failure (sewage does not back up into house);
- sewage is not being discharged on the ground or surface water sources:
- the proposed construction will not result in an increase in the number of bedroom(s), bedroom equivalents (rooms that can be used as bedrooms), and plumbing fixtures over what previously existed as determined by the Environmental Health Division; and,
- the proposed construction does not reconfigure the structure in a manner that encroaches upon the setbacks to the existing septic system and the 100% expansion area.

4. I would like to remodel my home. Does this notice affect me?

Yes; the remodel cannot result in an increase to the number of bedroom(s), bedroom equivalents, and/or plumbing fixtures over what currently exists; and the building footprint can not be reconfigured in a manner that encroaches upon the setbacks to the existing septic system and the 100% expansion area.

5. I believe that my proposed home/proposed remodel is in an area that can meet the sewage discharge/groundwater separation requirements. How can I avoid the building restrictions appearing in this notice?

There are two options available. The first is to connect the structure(s) to a public sewer system. If a public sewer connection is not available, the second option is to provide site-specific engineering data and test reports, satisfactory to the Environmental Health Division, demonstrating that an adequate septic system/groundwater separation will be maintained at all times. This data typically includes the results of soils exploration, surface elevation and topography information, and may require the results of wetweather groundwater level monitoring via an engineered groundwater monitoring well or wells.

If you have any questions, please call the Environmental Health Division at 805/654-2813